-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathParameter_expcalib.cpp
572 lines (481 loc) · 15.3 KB
/
Parameter_expcalib.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
/*
* DPPDiv version 1.0b source code (git: 9c0ac3d2258f89827cfe9ba2b5038f0f656b82c1)
* Copyright 2009-2011
* Tracy Heath(1,2,3) (NSF postdoctoral fellowship in biological informatics DBI-0805631)
* Mark Holder(1)
* John Huelsenbeck(2)
*
* (1) Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045
* (2) Integrative Biology, University of California, Berkeley, CA 94720-3140
* (3) email: tracyh@berkeley.edu
*
* DPPDiv is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License (the file gpl.txt included with this
* distribution or http://www.gnu.org/licenses/gpl.txt for more
* details.
*
* Some of this code is from publicly available source by John Huelsenbeck
*/
#include "Parameter.h"
#include "Parameter_expcalib.h"
#include "Parameter_tree.h"
#include "MbRandom.h"
#include "Model.h"
#include "util.h"
#include <iostream>
#include <iomanip>
#include <sstream>
using namespace std;
void LambdaTable::updateNodesAtTable(Tree *t){
for (set<int>::const_iterator d=diners.begin(); d != diners.end(); d++){
int cnID = (*d);
Node *c = t->getNodeByIndex(cnID);
c->setNodeExpCalRate(lambda);
}
}
double LambdaTable::getPriorPrForDiners(Tree *t){
double prob = 0.0;
double tScl = t->getTreeScale();
for (set<int>::const_iterator d=diners.begin(); d != diners.end(); d++){
int cnID = (*d);
Node *c = t->getNodeByIndex(cnID);
double nMin = c->getNodeYngTime();
double nDep = c->getNodeDepth();
double nDelt = (nDep * tScl) - nMin;
prob += randP->lnExponentialPdf(lambda, nDelt);
}
return prob;
}
void LambdaTable::printLambdaTableInfo(){
cout << "Lambda Cat (" << lambda << ") --> { ";
for (set<int>::const_iterator d=diners.begin(); d != diners.end(); d++){
int cnID = (*d);
cout << cnID << " ";
}
cout << "}" << endl;
}
ExpCalib::ExpCalib(MbRandom *rp, Model *mp, bool dphplc, int dphpng, double ts, bool ghp) : Parameter(rp, mp){
betaAlph1 = 1.0;
betaAlph2 = 20.0;
epsilonValue = 0.09;
majorityExpParm = 0.02 * ts;
outlieExpParm = 0.12 * ts;
dpmLambdaExpParm = 0.07 * ts;
name = "EC";
dpmLHP = dphplc;
dpmCP = 0.001;
gammaHPVals = ghp;
prNGrpsDPM = dphpng;
if(gammaHPVals){
gHPAlph = 2.0;
gHPBetaM = gHPAlph * majorityExpParm;
gHPBetaO = gHPAlph * outlieExpParm;
gHPBetaDP = gHPAlph * dpmLambdaExpParm;
curMajorityLambda = ranPtr->gammaRv(gHPAlph, gHPBetaM);
curOutlieLambda = ranPtr->gammaRv(gHPAlph, gHPBetaO);
}
else{
curMajorityLambda = ranPtr->exponentialRv(majorityExpParm);
curOutlieLambda = ranPtr->exponentialRv(outlieExpParm);
}
if(dpmLHP)
cout << "DPM fossil calibration lambda parameter = " << dpmLambdaExpParm << endl;
else
cout << "Contamination model fossil calibration lambda parameters: lambda1 = " << majorityExpParm << ", lambda2 = " << outlieExpParm << endl;
}
ExpCalib::~ExpCalib(void){
}
ExpCalib& ExpCalib::operator=(const ExpCalib &c) {
if (this != &c)
clone(c);
return *this;
}
void ExpCalib::clone(const ExpCalib &c) {
betaAlph1 = c.betaAlph1;
betaAlph2 = c.betaAlph2;
epsilonValue = c.epsilonValue;
majorityExpParm = c.majorityExpParm;
outlieExpParm = c.outlieExpParm;
curMajorityLambda = c.curMajorityLambda;
curOutlieLambda = c.curOutlieLambda;
calibNodeList = c.calibNodeList;
dpmLambdaHyp = c.dpmLambdaHyp;
dpmLHP = c.dpmLHP;
dpmCP = c.dpmCP;
dpmLambdaExpParm = c.dpmLambdaExpParm;
name = "EC";
}
void ExpCalib::print(std::ostream & o) const {
if(gammaHPVals){
if(dpmLHP){
o << "Exponential calibration parameters (DP model): = [expected = ";
o << dpmLambdaExpParm << ", gHPAlph = " << gHPAlph << ", gHPBetaDP = " << gHPBetaDP << "]";
}
else{
o << "Exponential calibration parameters (contamination model): = [gHPAlph = ";
o << gHPAlph << ", expected M = " << majorityExpParm << ", gHPBetaM = " << gHPBetaM;
o << ", expected O = " << outlieExpParm << ", gHPBetaO = " << gHPBetaO << "]";
}
}
else{
if(dpmLHP){
o << "Exponential calibration parameters (DP model): = [dpmLambdaExpParm = ";
o << dpmLambdaExpParm << "]";
}
else{
o << "Exponential calibration parameters (contamination model): = [l1 = ";
o << curMajorityLambda << ", l2 = " << curOutlieLambda;
o << ", eps = " << epsilonValue << "]";
}
}
o << endl;
}
double ExpCalib::update(double &oldLnL) {
if(dpmLHP)
updateDPMHyperPrior();
else
updateContamination();
modelPtr->setLnLGood(true);
modelPtr->setMyCurrLnl(oldLnL);
Tree *t = modelPtr->getActiveTree();
t->upDateAllCls();
t->upDateAllTis();
modelPtr->setTiProb();
return 0.0;
}
void ExpCalib::updateContamination() {
double tScl = modelPtr->getActiveTree()->getTreeScale();
nodeDeltas.clear();
for(vector<Node *>::iterator v = calibNodeList.begin(); v != calibNodeList.end(); v++){
double nMin = (*v)->getNodeYngTime();
double nDep = (*v)->getNodeDepth();
double nDelt = (nDep * tScl) - nMin;
nodeDeltas.push_back(nDelt);
}
updateMajorityLambda();
updateOutlierLambda();
updateNodeTaintedClassAssignment(tScl);
}
void ExpCalib::updateDPMHyperPrior() {
Tree *t = modelPtr->getActiveTree();
double tuning = log(2.0);
for(vector<LambdaTable *>::iterator lt=dpmLambdaHyp.begin(); lt != dpmLambdaHyp.end(); lt++){
double oldTL = (*lt)->getTableLambda();
double oldPr = (*lt)->getPriorPrForDiners(t);
double newTL = oldTL * exp(tuning * (ranPtr->uniformRv() - 0.5));
double minV = 0.0001;
double maxV = 1000;
bool validV = false;
do{
if(newTL < minV)
newTL = minV * minV / newTL;
else if(newTL > maxV)
newTL = maxV * maxV / newTL;
else
validV = true;
} while(!validV);
(*lt)->setTableLambda(newTL);
double newPr = (*lt)->getPriorPrForDiners(t);
double lpr = (newPr - oldPr) + (log(newTL) - log(oldTL));
if(gammaHPVals)
lpr += (ranPtr->lnGammaPdf(gHPAlph, gHPBetaDP, newPr) - ranPtr->lnGammaPdf(gHPAlph, gHPBetaDP, oldPr));
else
lpr += (ranPtr->lnExponentialPdf(dpmLambdaExpParm, newPr) - ranPtr->lnExponentialPdf(dpmLambdaExpParm, oldPr));
double r = modelPtr->safeExponentiation(lpr);
if(ranPtr->uniformRv() >= r){
(*lt)->setTableLambda(oldTL);
}
}
const int nAux = 3;
const double lnConOvNAux = log(dpmCP / nAux);
LambdaTable **auxilLTs = new LambdaTable*[nAux];
for(vector<Node *>::iterator v = calibNodeList.begin(); v != calibNodeList.end(); v++){
int calID = (*v)->getIdx();
LambdaTable *origLT = findLambTabWCalID(calID);
origLT->removeDiner(calID);
if(origLT->getNumDiners() == 0)
removeDPMLambdaTable(origLT);
vector<double> lnProb;
lnProb.reserve(dpmLambdaHyp.size() + nAux);
for(vector<LambdaTable *>::iterator lt=dpmLambdaHyp.begin(); lt != dpmLambdaHyp.end(); lt++){
const int nDiners = (*lt)->getNumDiners();
(*lt)->addDiner(calID);
double lnLTProb = getProbsAcrossAllTables();
lnProb.push_back( log(nDiners) + lnLTProb );
(*lt)->removeDiner(calID);
}
for(int i=0; i<nAux; i++){
double auxLV;
if(gammaHPVals)
auxLV = ranPtr->gammaRv(gHPAlph, gHPBetaDP);
else
auxLV = ranPtr->exponentialRv(dpmLambdaExpParm);
auxilLTs[i] = new LambdaTable(ranPtr, auxLV);
}
for(int i=0; i<nAux; i++){
LambdaTable *tempLT = auxilLTs[i];
dpmLambdaHyp.push_back(tempLT);
tempLT->addDiner(calID);
double lnLTProb = getProbsAcrossAllTables();
lnProb.push_back( lnConOvNAux + lnLTProb );
tempLT->removeDiner(calID);
removeDPMLambdaTable(tempLT);
}
normalizeVector(lnProb);
unsigned whichTable = ranPtr->categoricalRv(&lnProb[0], lnProb.size());
LambdaTable *newLT = NULL;
if(whichTable < dpmLambdaHyp.size()){
newLT = dpmLambdaHyp[whichTable];
newLT->addDiner(calID);
}
else{
newLT = auxilLTs[whichTable-dpmLambdaHyp.size()];
dpmLambdaHyp.push_back(newLT);
newLT->addDiner(calID);
}
for(int i=0; i<nAux; i++){
if(auxilLTs[i] != newLT)
delete auxilLTs[i];
}
}
delete [] auxilLTs;
assignDPMLambdasToCals();
}
void ExpCalib::updateMajorityLambda() {
double lpr = 0.0;
double lnPriorRat = 0.0;
double oldMajL = curMajorityLambda;
double newMajL;
double tuning = log(2.0);
newMajL = oldMajL * exp(tuning * (ranPtr->uniformRv() - 0.5));
double minV = 0.0000001;
double maxV = 1000000;
bool validV = false;
do{
if(newMajL < minV)
newMajL = minV * minV / newMajL;
else if(newMajL > maxV)
newMajL = maxV * maxV / newMajL;
else
validV = true;
} while(!validV);
lpr = log(newMajL) - log(oldMajL);
double prNum, prDen;
if(gammaHPVals){
prNum = ranPtr->lnGammaPdf(gHPAlph, gHPBetaM, newMajL);
prDen = ranPtr->lnGammaPdf(gHPAlph, gHPBetaM, oldMajL);
}
else{
prNum = ranPtr->lnExponentialPdf(majorityExpParm, newMajL);
prDen = ranPtr->lnExponentialPdf(majorityExpParm, oldMajL);
}
double priorValue = (prNum - prDen);
for(int i=0; i<nodeDeltas.size(); i++){
double outLV = epsilonValue * ranPtr->exponentialPdf(curOutlieLambda, nodeDeltas[i]);
double nv = (1 - epsilonValue) * ranPtr->exponentialPdf(newMajL, nodeDeltas[i]);
double dv = (1 - epsilonValue) * ranPtr->exponentialPdf(oldMajL, nodeDeltas[i]);
priorValue += (log(outLV + nv) - log(outLV + dv));
}
lnPriorRat = priorValue;
double lnR = lnPriorRat + lpr;
double r = modelPtr->safeExponentiation(lnR);
if ( ranPtr->uniformRv() < r )
curMajorityLambda = newMajL;
else
curMajorityLambda = oldMajL;
}
void ExpCalib::updateOutlierLambda() {
double lpr = 0.0;
double lnPriorRat = 0.0;
double oldOutL = curOutlieLambda;
double newOutL;
double tuning = log(2.0);
newOutL = oldOutL * exp(tuning * (ranPtr->uniformRv() - 0.5));
double minV = 0.0000001;
double maxV = 1000000;
bool validV = false;
do{
if(newOutL < minV)
newOutL = minV * minV / newOutL;
else if(newOutL > maxV)
newOutL = maxV * maxV / newOutL;
else
validV = true;
} while(!validV);
lpr = log(newOutL) - log(oldOutL);
double prNum, prDen;
if(gammaHPVals){
prNum = ranPtr->lnGammaPdf(gHPAlph, gHPBetaO, newOutL);
prDen = ranPtr->lnGammaPdf(gHPAlph, gHPBetaO, oldOutL);
}
else{
prNum = ranPtr->lnExponentialPdf(outlieExpParm, newOutL);
prDen = ranPtr->lnExponentialPdf(outlieExpParm, oldOutL);
}
double priorValue = (prNum - prDen);
for(int i=0; i<nodeDeltas.size(); i++){
double majLV = (1 - epsilonValue) * ranPtr->exponentialPdf(curMajorityLambda, nodeDeltas[i]);
double nv = epsilonValue * ranPtr->exponentialPdf(newOutL, nodeDeltas[i]);
double dv = epsilonValue * ranPtr->exponentialPdf(oldOutL, nodeDeltas[i]);
priorValue += (log(nv + majLV) - log(dv + majLV));
}
lnPriorRat = priorValue;
double lnR = lnPriorRat + lpr;
double r = modelPtr->safeExponentiation(lnR);
if ( ranPtr->uniformRv() < r )
curOutlieLambda = newOutL;
else
curOutlieLambda = oldOutL;
}
void ExpCalib::updateNodeTaintedClassAssignment(double tScl){
for(int i=0; i<calibNodeList.size(); i++){
vector<double> lnProb;
Node *p = calibNodeList[i];
double nMin = p->getNodeYngTime();
double nDep = p->getNodeDepth();
double nDelta = (nDep * tScl) - nMin;
double taintPr = log(epsilonValue) + ranPtr->lnExponentialPdf(curOutlieLambda, nDelta);
double cleanPr = log(1 - epsilonValue) + ranPtr->lnExponentialPdf(curMajorityLambda, nDelta);
lnProb.push_back(taintPr);
lnProb.push_back(cleanPr);
normalizeVector(lnProb);
unsigned whichClass = ranPtr->categoricalRv(&lnProb[0], lnProb.size());
if(whichClass == 0){
p->setIsContaminatedFossil(true);
p->setNodeExpCalRate(curOutlieLambda);
}
else{
p->setIsContaminatedFossil(false);
p->setNodeExpCalRate(curMajorityLambda);
}
lnProb.clear();
}
}
void ExpCalib::updateEpsilonValue() {
double lpr = 0.0;
double lnPriorRat = 0.0;
double oldEp = epsilonValue;
double newEp = ranPtr->uniformRv();
double prNum = ranPtr->betaPdf(betaAlph1, betaAlph2, newEp);
double prDen = ranPtr->betaPdf(betaAlph1, betaAlph2, oldEp);
for(int i=0; i<nodeDeltas.size(); i++){
double outPDF = ranPtr->exponentialPdf(curOutlieLambda, nodeDeltas[i]);
double majPDF = ranPtr->exponentialPdf(curMajorityLambda, nodeDeltas[i]);
double nv = (newEp * outPDF) + ((1 - newEp) * majPDF);
double dv = (oldEp * outPDF) + ((1 - oldEp) * majPDF);
prNum += log(nv);
prDen += log(dv);
}
lnPriorRat = prNum - prDen;
double lnR = lnPriorRat + lpr;
double r = modelPtr->safeExponentiation(lnR);
if ( ranPtr->uniformRv() < r )
epsilonValue = newEp;
else
epsilonValue = oldEp;
}
double ExpCalib::getLambdaForNode() {
if(ranPtr->uniformRv() < epsilonValue)
return curOutlieLambda;
else
return curMajorityLambda;
}
string ExpCalib::writeParam(void){
stringstream ss;
ss << "Exponential calibration parameters: = [l1 = ";
ss << curMajorityLambda << ", l2 = " << curOutlieLambda;
ss << ", eps = " << epsilonValue << "]\n";
string outp = ss.str();
return outp;
}
void ExpCalib::getAllExpHPCalibratedNodes(){
Tree *t = modelPtr->getActiveTree();
calibNodeList = t->getListOfCalibratedNodes();
if(dpmLHP)
initializeDPMLambdasToCals();
}
bool ExpCalib::getIsLambdaContaminationClass(double l){
if(l == curMajorityLambda)
return false;
else
return true;
}
void ExpCalib::initializeDPMLambdasToCals(){
int numCalNodes = calibNodeList.size();
if(numCalNodes > 2){
if(prNGrpsDPM > numCalNodes){
cerr << "ERROR: the prior mean number of calibration clusters is > the number of calibrated nodes!" << endl;
exit(1);
}
dpmCP = calculateFromPriorMean(prNGrpsDPM, numCalNodes);
int seated = 0;
for(vector<Node *>::iterator v = calibNodeList.begin(); v != calibNodeList.end(); v++){
double prNewTable = dpmCP / (seated + dpmCP);
int ndID = (*v)->getIdx();
if(ranPtr->uniformRv() < prNewTable){
double lmda;
if(gammaHPVals)
lmda = ranPtr->gammaRv(gHPAlph, gHPBetaDP);
else
lmda = ranPtr->exponentialRv(dpmLambdaExpParm);
LambdaTable *lt = new LambdaTable(ranPtr, lmda);
dpmLambdaHyp.push_back(lt);
lt->addDiner(ndID);
}
else{
double u = ranPtr->uniformRv();
double sum = 0.0;
for(vector<LambdaTable *>::iterator p=dpmLambdaHyp.begin(); p != dpmLambdaHyp.end(); p++){
sum += (double)((*p)->getNumDiners()) / seated;
if(u < sum){
(*p)->addDiner(ndID);
break;
}
}
}
seated++;
}
assignDPMLambdasToCals();
}
else
dpmLHP = false;
}
void ExpCalib::assignDPMLambdasToCals(){
Tree *t = modelPtr->getActiveTree();
for(vector<LambdaTable *>::iterator p=dpmLambdaHyp.begin(); p != dpmLambdaHyp.end(); p++){
(*p)->updateNodesAtTable(t);
}
}
LambdaTable* ExpCalib::findLambTabWCalID(int ix){
LambdaTable *g = NULL;
for(vector<LambdaTable *>::iterator lt=dpmLambdaHyp.begin(); lt != dpmLambdaHyp.end(); lt++){
if((*lt)->getIsDinerSeated(ix)){
g = (*lt);
break;
}
}
return g;
}
void ExpCalib::removeDPMLambdaTable(LambdaTable *g){
for(vector<LambdaTable *>::iterator lt=dpmLambdaHyp.begin(); lt != dpmLambdaHyp.end(); lt++){
if((*lt) == g){
dpmLambdaHyp.erase(lt);
break;
}
}
}
double ExpCalib::getProbsAcrossAllTables(){
Tree *t = modelPtr->getActiveTree();
double lnProbTables = 0.0;
for(vector<LambdaTable *>::iterator lt=dpmLambdaHyp.begin(); lt != dpmLambdaHyp.end(); lt++){
lnProbTables += (*lt)->getPriorPrForDiners(t);
}
return lnProbTables;
}