-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathread.py
95 lines (78 loc) · 3.49 KB
/
read.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import json
import yaml
from argparse import ArgumentParser
from datetime import datetime
from src.data import QADataset
from src.template import ReadTemplate
from src.generate import OpenaiComplete, AnthropicComplete
# args
parser = ArgumentParser(description="Generate answer to the question with given gold/paraphrased context")
parser.add_argument("--dataset", type=str, help="nq, strategyqa, qasc, or hotpotqa", required=True)
parser.add_argument("--paraph_path", type=str, help="path to the paraphrased contexts which are the output of paraphrase.py", required=True)
parser.add_argument("--buffer_size", type=int, default=50, help="number of results to save at once. Default: 50")
parser.add_argument("--data_path", type=str, default=None, help="path to the dataset file. If not given, use the path in config.yaml")
parser.add_argument("--result_path", type=str, default=None, help="path to save the results. If not given, automatically set")
args = parser.parse_args()
with open("config.yaml", "r") as f:
config = yaml.load(f, Loader=yaml.FullLoader)
# configure result path
if args.result_path is None:
NOW = datetime.now().strftime("%m%d-%H%M")
RESULT_PATH = f"read_{args.dataset}_{NOW}.jsonl"
else:
RESULT_PATH = args.result_path
# read paraphrased contexts into memory
PARAPH_PATH = args.paraph_path
paraphrased = {}
with open(PARAPH_PATH, "r") as f:
for line in f:
line = json.loads(line)
paraphrased[line['id']] = line
# dataset, template, and LLMs
if args.data_path is None: # follow config.yaml
dataset = QADataset(config['dataset_path'][args.dataset], args.dataset)
else:
dataset = QADataset(args.data_path, args.dataset)
template = ReadTemplate(args.dataset)
gpt = OpenaiComplete(config['openai_key_path'])
claude = AnthropicComplete(config['anthropic_key_path'])
# run
BUFFER_SIZE = args.buffer_size
buffer = []
for i, line in enumerate(dataset):
# original context
content_org = template.format(line['q'], line['c'])
# gpt paraphrased context
content_gpt = template.format(line['q'], paraphrased[line['id']]['c_gpt'])
# claude paraphrased context
content_claude = template.format(line['q'], paraphrased[line['id']]['c_claude'])
# complete
try:
a_org2gpt = gpt.complete(content_org, model='gpt-3.5-turbo', max_tokens=10)
a_org2claude = claude.complete(content_org, model='claude-1', max_tokens_to_sample=10)
a_gpt2gpt = gpt.complete(content_gpt, model='gpt-3.5-turbo', max_tokens=10)
a_gpt2claude = claude.complete(content_gpt, model='claude-1', max_tokens_to_sample=10)
a_claude2gpt = gpt.complete(content_claude, model='gpt-3.5-turbo', max_tokens=10)
a_claude2claude = claude.complete(content_claude, model='claude-1', max_tokens_to_sample=10)
except Exception as e:
print(e)
break
# save
result = {'id': line['id'], 'a': line['a'], 'a_org2gpt': a_org2gpt, 'a_org2claude': a_org2claude,
'a_gpt2gpt': a_gpt2gpt, 'a_gpt2claude': a_gpt2claude, 'a_claude2gpt': a_claude2gpt,
'a_claude2claude': a_claude2claude}
buffer.append(result)
# print progress
print(f"Ran {i + 1}/{len(dataset)}")
# write
if (i + 1) % BUFFER_SIZE == 0:
with open(RESULT_PATH, "a") as f:
for res in buffer:
f.write(json.dumps(res) + "\n")
buffer = []
break
# write any remaining results in the buffer
if buffer:
with open(RESULT_PATH, "a") as f:
for res in buffer:
f.write(json.dumps(res) + "\n")