forked from facebookresearch/TaBERT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
326 lines (259 loc) · 13.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import re
import sys
from argparse import ArgumentParser
from pathlib import Path
import torch
import random
import torch.nn as nn
import torch.distributed
from fairseq.data import GroupedIterator
from fairseq.optim.adam import FairseqAdam
from fairseq.optim.lr_scheduler.polynomial_decay_schedule import PolynomialDecaySchedule
from fairseq.options import eval_str_list
from torch.utils.data import DataLoader, RandomSampler
from tqdm import tqdm
import json
import numpy as np
from table_bert.vanilla_table_bert import VanillaTableBert
from table_bert.vertical.config import VerticalAttentionTableBertConfig
from table_bert.vertical.dataset import VerticalAttentionTableBertDataset
from table_bert.vertical.vertical_attention_table_bert import VerticalAttentionTableBert
from utils.comm import init_distributed_mode, init_signal_handler
from table_bert.config import TableBertConfig
from table_bert.dataset import TableDataset
from utils.evaluator import Evaluator
from utils.trainer import Trainer
from utils.util import init_logger
task_dict = {
'vanilla': {
'dataset': TableDataset,
'config': TableBertConfig,
'model': VanillaTableBert
},
'vertical_attention': {
'dataset': VerticalAttentionTableBertDataset,
'config': VerticalAttentionTableBertConfig,
'model': VerticalAttentionTableBert
}
}
def parse_train_arg():
parser = ArgumentParser()
parser.add_argument('--task',
type=str,
default='vanilla',
choices=['vanilla', 'vertical_attention'])
parser.add_argument('--seed',
type=int,
default=42,
help="random seed for initialization")
parser.add_argument("--cpu",
action='store_true',
help="Whether not to use CUDA when available")
parser.add_argument('--data-dir', type=Path, required=True)
parser.add_argument('--output-dir', type=Path, required=True)
parser.add_argument("--base-model-name", type=str, required=False,
help="Bert pre-trained table_bert selected in the list: bert-base-uncased, "
"bert-large-uncased, bert-base-cased, bert-base-multilingual, bert-base-chinese.",
default='bert-base-uncased')
parser.add_argument("--table-bert-extra-config", type=json.loads, default='{}')
parser.add_argument('--no-init', action='store_true', default=False)
# parser.add_argument('--config-file', type=Path, help='table_bert config file if do not use pre-trained BERT table_bert.')
# distributed training
parser.add_argument("--ddp-backend", type=str, default='pytorch', choices=['pytorch', 'apex'])
parser.add_argument("--local_rank", "--local-rank",
type=int,
default=-1,
help="local_rank for distributed training on gpus")
parser.add_argument("--master-port", type=int, default=-1,
help="Master port (for multi-node SLURM jobs)")
parser.add_argument("--debug-slurm", action='store_true',
help="Debug multi-GPU / multi-node within a SLURM job")
# training details
parser.add_argument("--train-batch-size",
default=32,
type=int,
help="Total batch size for training.")
parser.add_argument("--max-epoch", default=-1, type=int)
# parser.add_argument("--total-num-update", type=int, default=1000000, help="Number of steps to train for")
parser.add_argument('--gradient-accumulation-steps',
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.")
parser.add_argument("--lr-scheduler", type=str, default='polynomial_decay', help='Learning rate scheduler')
parser.add_argument("--optimizer", type=str, default='adam', help='Optimizer to use')
parser.add_argument('--lr', '--learning-rate', default='0.00005', type=eval_str_list,
metavar='LR_1,LR_2,...,LR_N',
help='learning rate for the first N epochs; all epochs >N using LR_N'
' (note: this may be interpreted differently depending on --lr-scheduler)')
parser.add_argument('--clip-norm', default=0., type=float, help='clip gradient')
parser.add_argument('--empty-cache-freq', default=0, type=int,
help='how often to clear the PyTorch CUDA cache (0 to disable)')
parser.add_argument('--save-checkpoint-every-niter', default=10000, type=int)
FairseqAdam.add_args(parser)
PolynomialDecaySchedule.add_args(parser)
# FP16 training
parser.add_argument('--fp16',
action='store_true',
help="Whether to use 16-bit float precision instead of 32-bit")
parser.add_argument('--memory-efficient-fp16',
action='store_true',
help='Use memory efficient fp16')
parser.add_argument('--threshold-loss-scale', type=float, default=None)
parser.add_argument('--fp16-init-scale', type=float, default=128)
# parser.add_argument('--fp16-scale-window', type=int, default=0)
parser.add_argument('--fp16-scale-tolerance', type=float, default=0.0)
parser.add_argument('--min-loss-scale', default=1e-4, type=float, metavar='D',
help='minimum FP16 loss scale, after which training is stopped')
parser.add_argument('--debug-dataset', default=False, action='store_true')
args = parser.parse_args()
model_cls = task_dict[args.task]['model']
if hasattr(model_cls, 'add_args'):
model_cls.add_args(parser)
args = parser.parse_args()
return args
def main():
args = parse_train_arg()
task = task_dict[args.task]
init_distributed_mode(args)
logger = init_logger(args)
if hasattr(args, 'base_model_name'):
logger.warning('Argument base_model_name is deprecated! Use `--table-bert-extra-config` instead!')
init_signal_handler()
train_data_dir = args.data_dir / 'train'
dev_data_dir = args.data_dir / 'dev'
table_bert_config = task['config'].from_file(
args.data_dir / 'config.json', **args.table_bert_extra_config)
if args.is_master:
args.output_dir.mkdir(exist_ok=True, parents=True)
with (args.output_dir / 'train_config.json').open('w') as f:
json.dump(vars(args), f, indent=2, sort_keys=True, default=str)
logger.info(f'Table Bert Config: {table_bert_config.to_log_string()}')
# copy the table bert config file to the working directory
# shutil.copy(args.data_dir / 'config.json', args.output_dir / 'tb_config.json')
# save table BERT config
table_bert_config.save(args.output_dir / 'tb_config.json')
assert args.data_dir.is_dir(), \
"--data_dir should point to the folder of files made by pregenerate_training_data.py!"
if args.cpu:
device = torch.device('cpu')
else:
device = torch.device(f'cuda:{torch.cuda.current_device()}')
logger.info("device: {} gpu_id: {}, distributed training: {}, 16-bits training: {}".format(
device, args.local_rank, bool(args.multi_gpu), args.fp16))
if args.gradient_accumulation_steps < 1:
raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format(
args.gradient_accumulation_steps))
real_batch_size = args.train_batch_size # // args.gradient_accumulation_steps
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if not args.cpu:
torch.cuda.manual_seed_all(args.seed)
if args.output_dir.is_dir() and list(args.output_dir.iterdir()):
logger.warning(f"Output directory ({args.output_dir}) already exists and is not empty!")
args.output_dir.mkdir(parents=True, exist_ok=True)
# Prepare model
if args.multi_gpu and args.global_rank != 0:
torch.distributed.barrier()
if args.no_init:
raise NotImplementedError
else:
model = task['model'](table_bert_config)
if args.multi_gpu and args.global_rank == 0:
torch.distributed.barrier()
if args.fp16:
model = model.half()
model = model.to(device)
if args.multi_gpu:
if args.ddp_backend == 'pytorch':
model = nn.parallel.DistributedDataParallel(
model,
find_unused_parameters=True,
device_ids=[args.local_rank], output_device=args.local_rank,
broadcast_buffers=False
)
else:
import apex
model = apex.parallel.DistributedDataParallel(model, delay_allreduce=True)
model_ptr = model.module
else:
model_ptr = model
# set up update parameters for LR scheduler
dataset_cls = task['dataset']
train_set_info = dataset_cls.get_dataset_info(train_data_dir, args.max_epoch)
total_num_updates = train_set_info['total_size'] // args.train_batch_size // args.world_size // args.gradient_accumulation_steps
args.max_epoch = train_set_info['max_epoch']
logger.info(f'Train data size: {train_set_info["total_size"]} for {args.max_epoch} epochs, total num. updates: {total_num_updates}')
args.total_num_update = total_num_updates
args.warmup_updates = int(total_num_updates * 0.1)
trainer = Trainer(model, args)
checkpoint_file = args.output_dir / 'model.ckpt.bin'
is_resumed = False
# trainer.save_checkpoint(checkpoint_file)
if checkpoint_file.exists():
logger.info(f'Logging checkpoint file {checkpoint_file}')
is_resumed = True
trainer.load_checkpoint(checkpoint_file)
model.train()
# we also partitation the dev set for every local process
logger.info('Loading dev set...')
sys.stdout.flush()
dev_set = dataset_cls(epoch=0, training_path=dev_data_dir, tokenizer=model_ptr.tokenizer, config=table_bert_config,
multi_gpu=args.multi_gpu, debug=args.debug_dataset)
logger.info("***** Running training *****")
logger.info(f" Current config: {args}")
if trainer.num_updates > 0:
logger.info(f'Resume training at epoch {trainer.epoch}, '
f'epoch step {trainer.in_epoch_step}, '
f'global step {trainer.num_updates}')
start_epoch = trainer.epoch
for epoch in range(start_epoch, args.max_epoch): # inclusive
model.train()
with torch.random.fork_rng(devices=None if args.cpu else [device.index]):
torch.random.manual_seed(131 + epoch)
epoch_dataset = dataset_cls(epoch=trainer.epoch, training_path=train_data_dir, config=table_bert_config,
tokenizer=model_ptr.tokenizer, multi_gpu=args.multi_gpu, debug=args.debug_dataset)
train_sampler = RandomSampler(epoch_dataset)
train_dataloader = DataLoader(epoch_dataset, sampler=train_sampler, batch_size=real_batch_size,
num_workers=0,
collate_fn=epoch_dataset.collate)
samples_iter = GroupedIterator(iter(train_dataloader), args.gradient_accumulation_steps)
trainer.resume_batch_loader(samples_iter)
with tqdm(total=len(samples_iter), initial=trainer.in_epoch_step,
desc=f"Epoch {epoch}", file=sys.stdout, disable=not args.is_master, miniters=100) as pbar:
for samples in samples_iter:
logging_output = trainer.train_step(samples)
pbar.update(1)
pbar.set_postfix_str(', '.join(f"{k}: {v:.4f}" for k, v in logging_output.items()))
if (
0 < trainer.num_updates and
trainer.num_updates % args.save_checkpoint_every_niter == 0 and
args.is_master
):
# Save model checkpoint
logger.info("** ** * Saving checkpoint file ** ** * ")
trainer.save_checkpoint(checkpoint_file)
logger.info(f'Epoch {epoch} finished.')
if args.is_master:
# Save a trained table_bert
logger.info("** ** * Saving fine-tuned table_bert ** ** * ")
model_to_save = model_ptr # Only save the table_bert it-self
output_model_file = args.output_dir / f"pytorch_model_epoch{epoch:02d}.bin"
torch.save(model_to_save.state_dict(), str(output_model_file))
# perform validation
logger.info("** ** * Perform validation ** ** * ")
dev_results = trainer.validate(dev_set)
if args.is_master:
logger.info('** ** * Validation Results ** ** * ')
logger.info(f'Epoch {epoch} Validation Results: {dev_results}')
# flush logging information to disk
sys.stderr.flush()
trainer.next_epoch()
if __name__ == '__main__':
main()