-
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathw3.txt
83 lines (72 loc) · 4.31 KB
/
w3.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
% Walsh's 3rd Axiom (CpCCNqCCNrsCptCCtqCrq), i.e. 0→((¬1→((¬2→3)→(0→4)))→((4→1)→(2→1)))
% Completeness follows w.r.t. CpCqp,CCpCqrCCpqCpr,CCNpNqCqp and CCpqCCqrCpr,CCNppp,CpCNpq.
%
% Proof system configuration: pmGenerator -c -n -s CpCCNqCCNrsCptCCtqCrq
% SHA-512/224 hash: 0df075acc552c62513b49b6ed674bfcde1c1b018e532c665be229314
%
% Full summary: pmGenerator --transform data/w3.txt -f -n -t . -j 1
% Step counting: pmGenerator --transform data/w3.txt -f -n -t . -p -2 -d
% pmGenerator --transform data/w3.txt -f -n -t CpCqp,CCpCqrCCpqCpr,CCNpNqCqp,Cpp,CCpqCCqrCpr,CCNppp,CpCNpq -p -2 -d
% Compact (1841 bytes): pmGenerator --transform data/w3.txt -f -n -t CpCqp,CCpCqrCCpqCpr,CCNpNqCqp,Cpp,CCpqCCqrCpr,CCNppp,CpCNpq -j -1 -s CCCpCCqrCsrtCCCqrCsrt,CCCNpqCCrCCNsCCNtuCrvCCvsCtsqCCqwCpw,CCCpCqrsCCqrs,CCpqCrCpq,CCpqCCCpqrCsr,CCCpqrCqr,CCCNpqrCpr,CCNppCqp,CpCqCrCCpsCts,CpCCpqCrq,CCCNCNpqrsCps,CNNCpqCrCpq,CCNCCpCqpNrsCrs,CNpCqCrCps,CCNNpqCpq,CCpqCCCrrNCNNpsq,CCCpqCNprCsCNpr,CCNpCCNqrCqsCCspCqp
% Concrete (24356 bytes): pmGenerator --transform data/w3.txt -f -n -t CpCqp,CCpCqrCCpqCpr,CCNpNqCqp,Cpp,CCpqCCqrCpr,CCNppp,CpCNpq -j -1 -e
CpCCNqCCNrsCptCCtqCrq = 1
[0] CCNpCCNqrCCsCCNtCCNuvCswCCwtCutxCCxpCqp = D11
[1] CCNpCCNqrCCCNsCCNtuCCvCCNwCCNxyCvzCCzwCxwaCCasCtsbCCbpCqp = D1[0]
[2] CCCpCCNqCCNrsCtuCCuqCrqvCCCNqCCNrsCtuCCuqCrqv = D[0]1
[3] CCCpCCqrCsrtCCCqrCsrt = D[1]1
[4] CCNpCCNqrCCCCsCCtuCvuwCCCtuCvuwxCCxpCqp = D1[3]
[5] CCCpCCCNqCCNrsCtuCCuqCrqvwCCCCNqCCNrsCtuCCuqCrqvw = DD1[2]1
[6] CCCpqCrqCCNsCCNtuCCvCCpqCrqwCCwsCts = D[3]1
[7] CCCpCCCqrCsrtuCCCCqrCsrtu = D[4]1
[8] CCCNpqCCrCCNsCCNtuCrvCCvsCtsqCCqwCpw = D[3][0]
[9] CCCNpqCCCNrCCNstCCuCCNvCCNwxCuyCCyvCwvzCCzrCsrqCCqaCpa = D[3][1]
[10] CCCNpCCNqCCNrsCNptCCtqCrqCCCrqpCqpCCCCCrqpCqpuCvu = D[2][8]
[11] CCCCCpCCNqCCNrsCtuCCuqCrqvCCCNqCCNrsCtuCCuqCrqvwCxw = D[10][0]
[12] CCCCNpCCNqrCCsCCNtCCNuvCswCCwtCutxCCxpCqpyCCyzCaz = D[5][9]
[13] CCCCCpCCqrCsrtCCCqrCsrtuCvu = D[10][1]
[14] CCCpCqrsCCqrs = DD1[11]1
[15] CCCCCpCCqrCsrtCCCqrCsrtCuCCCqrCsrtCCCuCCCqrCsrtvCwv = D[3]D[3][4]
[16] CCCNpqCCrCCNsCCNtuCrvCCvsCtswCCwxCpx = D[14][0]
[17] CCCCCpqrCqrsCts = D[16]1
[18] CCCCpqCrqsCtCCCpqCrqs = D[7][11]
[19] CCCCCCpqCrqsCCCtuCvuCCCpqCrqswCxw = D[15][7]
[20] CCpqCrCpq = D[14][11]
[21] CCpqCCCpqrCsr = D[14][12]
[22] CCCpqrCqr = DDD[17]D[3][2]1[0]
[23] CCCNpqrCpr = D[0]D[13][14]
[24] CpCCqpCrp = D[23][0]
[25] CCNppCqp = D[0][24]
% Axiom 1 by Frege (CpCqp), i.e. 0→(1→0) ; 67 steps
[26] CpCqp = DDD[17][17]11
[27] CpCqCrCCpsCts = DDD[14]D[6]11DD[3][9][3]
[28] CCCCNpqCrqpCsp = D[0][27]
[29] CCpqCpq = D[8][25]
[30] CpCCpqCrq = DD[1]DDD[3]D[3]D1[9][3][14][0]
[31] CCCNCNpqrsCps = D[0]D[13]D[0]DD[15][5][14]
[32] CpCqCrp = D[22][20]
[33] CCCCCpqrCsrtCqt = DD[14]DD[3][6][25]1
[34] CpCqCrCsp = D[22]D[14][20]
% Axiom 3 by Łukasiewicz (CpCNpq), i.e. 0→(¬0→1) ; 127 steps
[35] CpCNpq = D[23][29]
% Identity principle (Cpp), i.e. 0→0 ; 135 steps
[36] Cpp = DD[23]D[0][30]1
[37] CNNCpqCrCpq = DD[28]D[12]D[28]D[0]DD[0]D[19]D[0]D[19]D[0]D[19][14][18]1
[38] CCpNCCqCrqpCsNCCqCrqp = DD1[26][37]
[39] CCNCCpCqpNrsCrs = D[8][38]
[40] CCNCCppNqrCqr = D[8]DD1[36][37]
[41] CpCqCrNCCsCtsNp = D[39][32]
[42] CNpCqCrCps = D[22]DDD[14]D1DDD[17]D[3]D[3]D1[12]1[0]1DD[3][12][39]
[43] CCNNpqCpq = D[8]D[0]D[22]DD[8]D[0]D[39]D[22][18][24]
[44] CCpqCCCrrNCNNpsq = D[8]D[0]DD[0]DDD[17]D[3]D[3]D1[20]1[40][20]
[45] CCCpqCNprCsCNpr = D[0]D[33]D[21]D[23]D[16]D[23][38]
[46] CpCqCrCsNNp = D[43][34]
[47] CCpqCrCsCtNNCuCpq = D[14][46]
% Axiom 2 by Łukasiewicz (CCNppp), i.e. (¬0→0)→0 ; 1283 steps
[48] CCNppp = D[39]DDD[0]D[22]DDD1[7]1[18]DD[8]D[0]D[22]D[23][41][25]1
[49] CCNpCCNqrCqsCCspCqp = DDDD[0]D[22]DD[8]D[0]DD[45]D[40][34]1[24]D[0]DD[8]D[0]DD[45]D[14][47]1[24]11
% Axiom 1 by Łukasiewicz (CCpqCCqrCpr), i.e. (0→1)→((1→2)→(0→2)) ; 3227 steps
[50] CCpqCCqrCpr = D[14]D[14][49]
% Axiom 3 for Frege by Łukasiewicz (CCNpNqCqp), i.e. (¬0→¬1)→(1→0) ; 4821 steps
[51] CCNpNqCqp = DD[49]DDD[0]DDD[0]D[22]DD[8]D[0]D[22]D[22]D[14][41][32]D[22]D[31][29]1[27]1D[23][39]
% Axiom 2 by Frege (CCpCqrCCpqCpr), i.e. (0→(1→2))→((0→1)→(0→2)) ; 14557 steps
[52] CCpCqrCCpqCpr = DD[0]DD[8]D[0]DD[45][47]1DD[16]D[43]DDD[0]DD[28]D[21]D[22]DD[8]D[0]D[31][41][25]1[27]1D[8]DDDDDD[0][42][28]1DD[8]D[0]D[33]D[43][32][30][12][25]DD[49]DD[8]D[0]DDD[0]D[22]D[44][42][46]1DDD[0]D[22]D[44][27]D[21][50]1[20]