-
Notifications
You must be signed in to change notification settings - Fork 13
/
Evaluate_PSNR_SSIM.m
296 lines (270 loc) · 9.55 KB
/
Evaluate_PSNR_SSIM.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
function Evaluate_PSNR_SSIM()
clear all; close all; clc
%% set path
degradation = 'BI'; % BI, BD
methods = {'R2R_NCS2_CASA2_SE_TRANSF6_S_X3'};
dataset = {'BSDS100'};
ext = {'*.jpg', '*.png', '*.bmp'};
num_method = length(methods);%num_method=1
num_set = length(dataset);
record_results_txt = ['PSNR_SSIM_Results_', degradation,'_model.txt'];%输出txt文件PSNR_SSIM_Results_degradation(BI)_model.txt
results = fopen(fullfile(record_results_txt), 'wt');%测试结果写入txt文件
if strcmp(degradation, 'BI')
scale_all = 3;
else
scale_all = 2;
end
for idx_method = 1:num_method
%idx_method=1,2
for idx_set = 1:num_set
fprintf(results, '**********************\n');
fprintf(results, 'Method_%d: %s; Set: %s\n', idx_method, methods{idx_method}, dataset{idx_set});
fprintf('**********************\n');
fprintf('Method_%d: %s; Set: %s\n', idx_method, methods{idx_method}, dataset{idx_set});%输出 Method_1: MSRN; Set: Set5
for scale = scale_all
filepaths = [];
for idx_ext = 1:length(ext)
filepaths = cat(1, filepaths, dir(fullfile('./HR', dataset{idx_set}, ['x', num2str(scale)], ext{idx_ext})));%输出类似这种:./HR/Set5/x2/的图片文件
end
PSNR_all = zeros(1, length(filepaths));
SSIM_all = zeros(1, length(filepaths));
for idx_im = 1:length(filepaths)
name_HR = filepaths(idx_im).name;
if strcmp(dataset{idx_set},'urban100') == 1
name_SR_1 = strrep(name_HR, '_HR_x3','');
name_SR = erase(name_SR_1,'_');
else
name_SR = strrep(name_HR, '_HR_x3','');
end
% name_SR = strrep(name_HR, '_HR_x2','x2');
im_HR = imread(fullfile('./HR', dataset{idx_set}, ['x', num2str(scale)], name_HR));
im_SR = imread(fullfile('./SR', degradation, [methods{idx_method}], dataset{idx_set}, ['x', num2str(scale)], name_SR));%输出类似这种:./SR/BI/methods(文件名为方法名)/Set5/x2/
% change channel for evaluation
if 3 == size(im_HR, 3)
im_HR_YCbCr = single(rgb2ycbcr(im2double(im_HR)));
im_HR_Y = im_HR_YCbCr(:,:,1);
im_SR_YCbCr = single(rgb2ycbcr(im2double(im_SR)));
im_SR_Y = im_SR_YCbCr(:,:,1);
else
im_HR_Y = single(im2double(im_HR));
im_SR_Y = single(im2double(im_SR));
end
% calculate PSNR, SSIM
[PSNR_all(idx_im), SSIM_all(idx_im)] = Cal_Y_PSNRSSIM(im_HR_Y*255, im_SR_Y*255, scale, scale);
fprintf(results, 'x%d %d %s: PSNR= %f SSIM= %f\n', scale, idx_im, name_SR, PSNR_all(idx_im), SSIM_all(idx_im));
fprintf('x%d %d %s: PSNR= %f SSIM= %f\n', scale, idx_im, name_SR, PSNR_all(idx_im), SSIM_all(idx_im));
end
fprintf(results, '--------Mean--------\n');
fprintf('--------Mean--------\n');
fprintf(results, 'x%d: PSNR= %f SSIM= %f\n', scale, mean(PSNR_all), mean(SSIM_all));
fprintf('x%d: PSNR= %f SSIM= %f\n', scale, mean(PSNR_all), mean(SSIM_all));
end
end
end
fclose(results);
end
function [psnr_cur, ssim_cur] = Cal_Y_PSNRSSIM(A,B,row,col)
% shave border if needed
if nargin > 2
[n,m,~]=size(A);
A = A(row+1:n-row,col+1:m-col,:);
B = B(row+1:n-row,col+1:m-col,:);
end
% RGB --> YCbCr
if 3 == size(A, 3)
A = rgb2ycbcr(A);
A = A(:,:,1);
end
if 3 == size(B, 3)
B = rgb2ycbcr(B);
B = B(:,:,1);
end
% calculate PSNR
A=double(A); % Ground-truth
B=double(B); %
e=A(:)-B(:);
mse=mean(e.^2);
psnr_cur=10*log10(255^2/mse);
% calculate SSIM
[ssim_cur, ~] = ssim_index(A, B);
end
function [mssim, ssim_map] = ssim_index(img1, img2, K, window, L)
%========================================================================
%SSIM Index, Version 1.0
%Copyright(c) 2003 Zhou Wang
%All Rights Reserved.
%
%The author is with Howard Hughes Medical Institute, and Laboratory
%for Computational Vision at Center for Neural Science and Courant
%Institute of Mathematical Sciences, New York University.
%
%----------------------------------------------------------------------
%Permission to use, copy, or modify this software and its documentation
%for educational and research purposes only and without fee is hereby
%granted, provided that this copyright notice and the original authors'
%names appear on all copies and supporting documentation. This program
%shall not be used, rewritten, or adapted as the basis of a commercial
%software or hardware product without first obtaining permission of the
%authors. The authors make no representations about the suitability of
%this software for any purpose. It is provided "as is" without express
%or implied warranty.
%----------------------------------------------------------------------
%
%This is an implementation of the algorithm for calculating the
%Structural SIMilarity (SSIM) index between two images. Please refer
%to the following paper:
%
%Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, "Image
%quality assessment: From error measurement to structural similarity"
%IEEE Transactios on Image Processing, vol. 13, no. 1, Jan. 2004.
%
%Kindly report any suggestions or corrections to zhouwang@ieee.org
%
%----------------------------------------------------------------------
%
%Input : (1) img1: the first image being compared
% (2) img2: the second image being compared
% (3) K: constants in the SSIM index formula (see the above
% reference). defualt value: K = [0.01 0.03]
% (4) window: local window for statistics (see the above
% reference). default widnow is Gaussian given by
% window = fspecial('gaussian', 11, 1.5);
% (5) L: dynamic range of the images. default: L = 255
%
%Output: (1) mssim: the mean SSIM index value between 2 images.
% If one of the images being compared is regarded as
% perfect quality, then mssim can be considered as the
% quality measure of the other image.
% If img1 = img2, then mssim = 1.
% (2) ssim_map: the SSIM index map of the test image. The map
% has a smaller size than the input images. The actual size:
% size(img1) - size(window) + 1.
%
%Default Usage:
% Given 2 test images img1 and img2, whose dynamic range is 0-255
%
% [mssim ssim_map] = ssim_index(img1, img2);
%
%Advanced Usage:
% User defined parameters. For example
%
% K = [0.05 0.05];
% window = ones(8);
% L = 100;
% [mssim ssim_map] = ssim_index(img1, img2, K, window, L);
%
%See the results:
%
% mssim %Gives the mssim value
% imshow(max(0, ssim_map).^4) %Shows the SSIM index map
%
%========================================================================
if (nargin < 2 || nargin > 5)
ssim_index = -Inf;
ssim_map = -Inf;
return;
end
if (size(img1) ~= size(img2))
ssim_index = -Inf;
ssim_map = -Inf;
return;
end
[M N] = size(img1);
if (nargin == 2)
if ((M < 11) || (N < 11))
ssim_index = -Inf;
ssim_map = -Inf;
return
end
window = fspecial('gaussian', 11, 1.5); %
K(1) = 0.01; % default settings
K(2) = 0.03; %
L = 255; %
end
if (nargin == 3)
if ((M < 11) || (N < 11))
ssim_index = -Inf;
ssim_map = -Inf;
return
end
window = fspecial('gaussian', 11, 1.5);
L = 255;
if (length(K) == 2)
if (K(1) < 0 || K(2) < 0)
ssim_index = -Inf;
ssim_map = -Inf;
return;
end
else
ssim_index = -Inf;
ssim_map = -Inf;
return;
end
end
if (nargin == 4)
[H W] = size(window);
if ((H*W) < 4 || (H > M) || (W > N))
ssim_index = -Inf;
ssim_map = -Inf;
return
end
L = 255;
if (length(K) == 2)
if (K(1) < 0 || K(2) < 0)
ssim_index = -Inf;
ssim_map = -Inf;
return;
end
else
ssim_index = -Inf;
ssim_map = -Inf;
return;
end
end
if (nargin == 5)
[H W] = size(window);
if ((H*W) < 4 || (H > M) || (W > N))
ssim_index = -Inf;
ssim_map = -Inf;
return
end
if (length(K) == 2)
if (K(1) < 0 || K(2) < 0)
ssim_index = -Inf;
ssim_map = -Inf;
return;
end
else
ssim_index = -Inf;
ssim_map = -Inf;
return;
end
end
C1 = (K(1)*L)^2;
C2 = (K(2)*L)^2;
window = window/sum(sum(window));
img1 = double(img1);
img2 = double(img2);
mu1 = filter2(window, img1, 'valid');
mu2 = filter2(window, img2, 'valid');
mu1_sq = mu1.*mu1;
mu2_sq = mu2.*mu2;
mu1_mu2 = mu1.*mu2;
sigma1_sq = filter2(window, img1.*img1, 'valid') - mu1_sq;
sigma2_sq = filter2(window, img2.*img2, 'valid') - mu2_sq;
sigma12 = filter2(window, img1.*img2, 'valid') - mu1_mu2;
if (C1 > 0 & C2 > 0)
ssim_map = ((2*mu1_mu2 + C1).*(2*sigma12 + C2))./((mu1_sq + mu2_sq + C1).*(sigma1_sq + sigma2_sq + C2));
else
numerator1 = 2*mu1_mu2 + C1;
numerator2 = 2*sigma12 + C2;
denominator1 = mu1_sq + mu2_sq + C1;
denominator2 = sigma1_sq + sigma2_sq + C2;
ssim_map = ones(size(mu1));
index = (denominator1.*denominator2 > 0);
ssim_map(index) = (numerator1(index).*numerator2(index))./(denominator1(index).*denominator2(index));
index = (denominator1 ~= 0) & (denominator2 == 0);
ssim_map(index) = numerator1(index)./denominator1(index);
end
mssim = mean2(ssim_map);
end