-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathtrain_lddg.py
258 lines (219 loc) · 12.4 KB
/
train_lddg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
import argparse
import logging
import os
from dataset import spinal_cord_challenge
import sys
import numpy as np
import random
import torch
import torch.nn as nn
from torch import optim
from tqdm import tqdm
# from eval import eval_net
from unet import unet
from tensorboardX import SummaryWriter
from torch.utils.data import ConcatDataset, DataLoader, random_split
from utils import get_box, get_center
import utils.triplet
import utils.logger
import utils
from torch.autograd import Function
import eval
import cv2
from torchvision.utils import save_image
import torch.nn.functional as F
import SynchronousTransforms.transforms as T
from SynchronousTransforms import transforms
# import segmentation_models_pytorch as smp
gpu_id = utils.get_available_GPUs(1, 1., 0.4)[0]
os.environ['CUDA_VISIBLE_DEVICES'] = str(gpu_id)
print("GPU_ID:%d" % gpu_id)
eps = 1e-10
# Ours, need reparametric trick!
def kl_gaussian_loss(mu, logvar):
kl_loss = -0.5 * torch.mean(1 + logvar - mu.pow(2) - logvar.exp())
return kl_loss
# faster convolutions, but more memory
# cudnn.benchmark = True
def get_batch(dataset, batch_size):
x_list = []
spinal_mask_list = []
gm_mask_list = []
for _ in range(batch_size):
x, spinal_cord_mask, gm_mask = dataset[0]
x_list.append(x)
spinal_mask_list.append(spinal_cord_mask)
gm_mask_list.append(gm_mask)
return x_list, spinal_mask_list, gm_mask_list
# return torch.stack(x_list, dim=0).cuda(), torch.stack(spinal_mask_list, dim=0).cuda(), torch.stack(gm_mask_list,dim=0).cuda()
def csa_loss(x, y, class_eq):
margin = 1
dist = F.pairwise_distance(x, y)
loss = class_eq * dist.pow(2)
loss += (1 - class_eq) * (margin - dist).clamp(min=0).pow(2)
return loss.mean()
class LowRank(Function):
@staticmethod
def forward(ctx, x):
U, S, V = torch.svd(x)
ctx.save_for_backward(x, U, V)
return torch.sum(S)
@staticmethod
def backward(ctx, grad_output):
data = ctx.saved_tensors
grad = torch.mm(data[1], data[2].t())
return grad_output * grad
def get_multi_batch(dataset_list, batch_size):
x_list = []
spinal_mask_list = []
gm_mask_list = []
for dataset in dataset_list:
x, spinal_cord_mask, gm_mask = get_batch(dataset, batch_size)
x_list.extend(x)
spinal_mask_list.extend(spinal_cord_mask)
gm_mask_list.extend(gm_mask)
return torch.stack(x_list, dim=0).cuda(), torch.stack(spinal_mask_list, dim=0).cuda(), torch.stack(gm_mask_list,
dim=0).cuda()
def train_net(args):
if args.load != "":
checkpoint = torch.load(args.load + '/saved_model')
net_spinal_cord, net_gm = checkpoint['net_spinal_cord'].cuda(), checkpoint['net_gm'].cuda()
else:
net_spinal_cord = unet.UNetOurs(1, 1, feature_dim=args.latent_dim).cuda()
net_gm = unet.UNetOurs(1, 1, feature_dim=args.latent_dim).cuda()
dataset_list = spinal_cord_challenge.makeDataset(phase='train_nips',
transform_train=T.ComposedTransform(
[T.CenterCrop(160),
# T.Sharpness([0, 30]),
# T.Blurriness(), T.Noise([0., 0.05]),
# T.Brightness(),
# T.Rotation(), T.Scale([0.7, 1.3]),
T.RandomCrop(144)]))
target_domain_dataset = dataset_list.pop('site%d' % args.d_t)
target_domain_dataset.phase = 'infer'
source_domain_datasets = list(dataset_list.values())
source_domain_num = len(source_domain_datasets)
total_sample_num = sum([len(source_domain_dataset) for source_domain_dataset in source_domain_datasets])
iter_per_epoch = total_sample_num // args.batch_size
# train_loader_list = [DataLoader(source_domain_dataset, batch_size=args.batch_size, shuffle=True,
# pin_memory=False) for source_domain_dataset in source_domain_datasets]
val_loader = DataLoader(target_domain_dataset, batch_size=1, shuffle=False,
pin_memory=True)
writer = SummaryWriter(args.load,
comment='ours_no_meta target:%d_lr:%.2e_batch:%d low_rank_w:%.2e kl_w:%.2e latent_dim:%d %s' % (
args.d_t, args.lr, args.batch_size, args.low_rank_tradeoff, args.kl_weight,
args.latent_dim, args.info))
logger = utils.logger.Logger(file_path=os.path.join(writer.logdir, 'log.txt'), tensorboard_writer=writer)
log_dir = writer.logdir
global_step = 0
print(args)
optimizer_spinal_cord = optim.Adam(net_spinal_cord.parameters(), lr=args.lr, weight_decay=1e-8)
optimizer_gm = optim.Adam(net_gm.parameters(), lr=args.lr, weight_decay=1e-8)
lr_scheduler_gm = optim.lr_scheduler.StepLR(optimizer=optimizer_gm, step_size=80)
lr_scheduler_spinal = optim.lr_scheduler.StepLR(optimizer=optimizer_spinal_cord, step_size=80)
best_DSC = 0
for epoch in range(args.epochs):
net_gm.train()
net_spinal_cord.train()
for idx in range(iter_per_epoch):
# source_datasets_backup = source_domain_datasets.copy()
random.shuffle(source_domain_datasets)
x_tr, spinal_cord_mask_tr, gm_mask_tr = get_multi_batch(source_domain_datasets[:-1],
args.batch_size // source_domain_num)
x_te, spinal_cord_mask_te, gm_mask_te = get_multi_batch([source_domain_datasets[-1]],
args.batch_size // source_domain_num)
gm_mask = torch.cat([gm_mask_tr, gm_mask_te], dim=0) # b*1*w*h
spinal_cord_mask = torch.cat([spinal_cord_mask_tr, spinal_cord_mask_te], dim=0)
x = torch.cat([x_tr, x_te], dim=0) # b*1*w*h
spinal_cord_pred, mu_logvar = net_spinal_cord(x) # b*1*w*h, b*64*w*h
spinal_pos_weight = torch.tensor(1.) / torch.mean(spinal_cord_mask.detach()) * args.p_weight1
if torch.isinf(spinal_pos_weight) or torch.isnan(spinal_pos_weight):
spinal_pos_weight = torch.tensor(1.).cuda()
loss_spinal_cord = F.binary_cross_entropy_with_logits(spinal_cord_pred, spinal_cord_mask,
pos_weight=spinal_pos_weight)
loss_kl_spinal = kl_gaussian_loss(mu_logvar[:, 0], mu_logvar[:, 1])
# loss_spinal = args.kl_weight * loss_kl_spinal + loss_spinal_cord
feature = mu_logvar[:, 2].permute(0, 2, 3, 1).contiguous().view(-1, net_spinal_cord.feature_dim)
feature = feature[torch.randperm(len(feature))]
U, S_spinal, V = torch.svd(feature[0:2000])
low_rank_loss_spinal = S_spinal[2]
total_loss_spin = loss_spinal_cord + loss_kl_spinal * args.kl_weight * 2 + low_rank_loss_spinal * args.low_rank_tradeoff
optimizer_spinal_cord.zero_grad()
total_loss_spin.backward()
optimizer_spinal_cord.step()
# gm segmentation # # gm segmentation # # gm segmentation # # gm segmentation # # gm segmentation #
spinal_mask_pred = (torch.sigmoid(spinal_cord_pred) > 0.5).detach().float() # N*C*W*H
local_max = (spinal_mask_pred * x).max(dim=2)[0].max(dim=2)[0]
local_min = ((1 - spinal_mask_pred) * 9999 + spinal_mask_pred * x).min(dim=2)[0].min(dim=2)[0]
local_min *= (local_min < 9000).float()
local_max = local_max.view(-1, 1, 1, 1)
local_min = local_min.view(-1, 1, 1, 1)
x = torch.clamp((x - local_min) / ((local_max - local_min) + ((local_max - local_min) == 0).float()), 0, 1)
gm_pred, mu_logvar = net_gm(x)
gm_pos_weight = torch.sum(spinal_mask_pred) / torch.sum(spinal_mask_pred * gm_mask)
if torch.isinf(gm_pos_weight) or torch.isnan(gm_pos_weight):
gm_pos_weight = torch.tensor(1.).cuda()
loss_gm = F.binary_cross_entropy_with_logits(
gm_pred * spinal_mask_pred,
gm_mask,
pos_weight=gm_pos_weight)
loss_kl_gm = kl_gaussian_loss(mu_logvar[:, 0], mu_logvar[:, 1])
feature = mu_logvar[:, 2].permute(0, 2, 3, 1).contiguous().view(-1, net_gm.feature_dim)
spinal_mask_local = spinal_mask_pred.permute(0, 2, 3, 1).view(-1).nonzero()[:, 0]
feature = feature[spinal_mask_local][torch.randperm(len(spinal_mask_local))]
U, S_gm, V = torch.svd(feature[0:min(2000, len(spinal_mask_local))])
# S_, S_indices = torch.sort(S_gm, dim=1, descending=True)
low_rank_loss_gm = S_gm[2]
total_loss_gm = args.kl_weight * loss_kl_gm + loss_gm + low_rank_loss_gm * args.low_rank_tradeoff
optimizer_gm.zero_grad()
total_loss_gm.backward()
optimizer_gm.step()
logger.collect_iter_info(
{'gm_total_loss': total_loss_gm, 'spinal_total_loss': total_loss_spin, 'gm_rec_loss': loss_gm,
'gm_low_rank_loss': low_rank_loss_gm, 'gm_kl_loss': loss_kl_gm, 'spinal_rec_loss': loss_spinal_cord,
'spinal_low_rank_loss': low_rank_loss_spinal, 'spinal_kl_loss': loss_kl_spinal,
'rank_spinal': S_spinal, 'rank_gm': S_gm})
global_step += 1
logger.log_train_info(epoch=epoch)
if epoch % 1 == 0 or epoch == args.epochs:
eval_result = eval.eval_net(net_spinal_cord, net_gm, val_loader, writer=writer, epoch=epoch, logger=logger)
if eval_result['DSC'] > best_DSC:
best_DSC = eval_result['DSC']
torch.save({'net_spinal_cord': net_spinal_cord, 'net_gm': net_gm},
os.path.join(writer.logdir, 'best_dsc_model.pth'))
with open(os.path.join(writer.logdir, 'best_dsc.txt'), 'a') as f:
f.write('epoch:%d\n' % epoch)
f.write(str(eval_result))
f.write('\n')
lr_scheduler_gm.step()
lr_scheduler_spinal.step()
# torch.save({'net_spinal_cord': net_spinal_cord, 'net_gm': net_gm},
# os.path.join(log_dir, 'saved_model'))
writer.close()
def get_args():
parser = argparse.ArgumentParser(description='Train the UNet on images and target masks',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('-t', '--target domain', dest='d_t', type=int, default=1, help="target domain(from 1 to 4)")
parser.add_argument('-k', '--kl_weight', type=float, default=0.01, # 366
help='kl loss tradeoff', dest='kl_weight')
parser.add_argument('-lk', '--low_rank_tradeoff', type=float, default=0.001, # 366
help='low rank loss tradeoff', dest='low_rank_tradeoff')
parser.add_argument('-w1', '--weight_spinal', type=float, default=2, # 366
help='extra spinal cord weight', dest='p_weight1')
parser.add_argument('-i', '--info', type=str, default='', help='comment info', dest='info')
parser.add_argument('-l', '--learning-rate', metavar='LR', type=float, nargs='?', default=1e-4, # 5e-6,
help='Learning rate', dest='lr')
parser.add_argument('--latent_dim', type=int, default=8,
help='latent dim of vae')
parser.add_argument('-f', '--load', dest='load', type=str,
default='',
help='Load model from a .pth file')
parser.add_argument('-e', '--epochs', metavar='E', type=int, default=200,
help='Number of epochs', dest='epochs')
parser.add_argument('-b', '--batch_size', type=int, default=24,
help='Number of epochs', dest='batch_size')
args = parser.parse_args()
return args
if __name__ == '__main__':
args = get_args()
train_net(args)