-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdata.h
240 lines (230 loc) · 5.67 KB
/
data.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
#ifndef DATA_H
#define DATA_H
#include <iostream>
#include <vector>
#include <math.h>
#include <stdlib.h>
#include <assert.h>
#include <set>
using namespace std;
typedef int ClassID;
typedef int FeatureID;
typedef int SampleID;
typedef double FeatureValue;
const double LargeNum=10000000000000;
const double SmallNum=-10000000000000;
inline double min(double data1,double data2)
{
return data1<data2?data1:data2;
}
inline double max(double data1,double data2)
{
return data1>data2?data1:data2;
}
const double operator*(const vector<double>& lfh, const vector<double>& rgh)
{
double sum;
assert(lfh.size()==rgh.size());
int size=min(lfh.size(),rgh.size());
for(int i=0;i<size;i++)
{
sum+=lfh[i]*rgh[i];
}
return sum;
}
const vector<double> operator-(const vector<double>& lfh, const vector<double>& rgh)
{
vector<double> result;
assert(lfh.size()==rgh.size());
int size=min(lfh.size(),rgh.size());
result.resize(size);
for(int i=0;i<size;i++)
{
result[i]=lfh[i]-rgh[i];
}
return result;
}
const vector<double> operator+(const vector<double>& lfh, const vector<double>& rgh)
{
vector<double> result;
assert(lfh.size()==rgh.size());
int size=min(lfh.size(),rgh.size());
result.resize(size);
for(int i=0;i<size;i++)
{
result[i]=lfh[i]+rgh[i];
}
return result;
}
const vector<double> operator*(double lfh, const vector<double>& rgh)
{
vector<double> result;
result.resize(rgh.size());
for(int i=0;i<rgh.size();i++)
{
result[i]=lfh*rgh[i];
}
return result;
}
vector<double> operator/(const vector<double>& lfh,double rgh)
{
vector<double> result;
result.resize(lfh.size());
for(int i=0;i<lfh.size();i++)
{
result[i]+=lfh[i]/rgh;
}
return result;
}
void operator+=(vector<double>& lfh, const vector<double>& rgh)
{
lfh=lfh+rgh;
}
void operator-=(vector<double>& lfh, const vector<double>& rgh)
{
lfh=lfh-rgh;
}
double norm2(const vector<double>& vec)
{
return sqrt(vec*vec);
}
double norm1(const vector<double>& vec)
{
double sum=0;
for(vector<double>::const_iterator iter=vec.begin();iter!=vec.end();iter++)
sum+=abs(*iter);
return sum;
}
double norm(const vector<double>& vec)
{
return norm2(vec);
}
double sum(const vector<double>& vec)
{
double sum=0;
for(vector<double>::const_iterator iter=vec.begin();iter!=vec.end();iter++)
sum+=(*iter);
return sum;
}
double mean(const vector<double>& vec)
{
return sum(vec)/double(vec.size());
}
double variance(const vector<double>& vec)
{
return norm(vec)/vec.size()-mean(vec)*mean(vec);
}
double sigmoid(double s)
{
return 1/(1+exp(0-s));
}
double square_error(double sum_left, double square_sum_left, int count_left,double sum_right,double square_sum_right, double count_right)
{
double error=0;
if(count_left!=0)
{
double mean_left = sum_left / count_left;
error+=(square_sum_left - mean_left * mean_left * count_left );
}
if(count_right!=0)
{
double mean_right = sum_right / count_right;
error+=(square_sum_right- mean_right * mean_right * count_right);
}
return error;
}
std::pair<FeatureValue, double> best_spilit_by_square_error(const vector<std::pair<FeatureValue,double> >& feature_value_map,double square_sum,double sum)
{
double sum_left=0, square_sum_left=0, sum_right=square_sum, square_sum_right=sum;
int count_left=0,count_right=feature_value_map.size();
double min_error=LargeNum,error;
FeatureValue spilit_value;
while(count_right>0)
{
error=square_error(sum_left,square_sum_left, count_left,sum_right, square_sum_right, count_right) ;
if(error<min_error)
{
min_error=error;
spilit_value=feature_value_map[count_left].first;
}
count_left++;
sum_left+=feature_value_map[count_left].second;
square_sum_left+=feature_value_map[count_left].second*feature_value_map[count_left].second;
count_right--;
sum_right-=feature_value_map[count_left].second;
square_sum_right-=feature_value_map[count_left].second*feature_value_map[count_left].second;
}
return make_pair(spilit_value,error);
}
class Data
{
public:
vector<double> input;
virtual void read(string filename)=0;
virtual void write(string filename)=0;
};
class ClusterData:public Data
{
public:
ClassID data_class;
virtual void read(string filename)
{
}
virtual void write(string filename)
{
}
};
class ClassificationData:public Data
{
public:
bool output;
virtual void read(string filename)
{
}
virtual void write(string filename)
{
}
};
class MultiClassificationData:public Data
{
public:
ClassID data_class;
virtual void read(string filename)
{
}
virtual void write(string filename)
{
}
};
class ReagressionData:public Data
{
public:
double output;
virtual void read(string filename)
{
}
virtual void write(string filename)
{
}
};
const double euclid_distance(const ClusterData& p1,const ClusterData& p2)
{
return norm(p1.input-p2.input);
}
int get_dim_of(std::vector<MultiClassificationData> data)
{
if(data.empty())
return 0;
else
return data[0].input.size();
}
int get_class_num_of(std::vector<MultiClassificationData> data)
{
std::set<ClassID> class_ids;
for(size_t i=0;i<data.size();i++)
{
class_ids.insert(data[i].data_class);
}
return class_ids.size();
}
#endif