diff --git a/llama.cpp b/llama.cpp index d763cc80cb4c2..259f2a3a3ea00 100644 --- a/llama.cpp +++ b/llama.cpp @@ -2791,13 +2791,7 @@ struct llama_model_loader { std::vector> read_buf; - for (int i = 0; i < gguf_get_n_tensors(ctx_gguf); i++) { - struct ggml_tensor * cur = ggml_get_tensor(ctx, gguf_get_tensor_name(ctx_gguf, i)); - if (!cur) { - // some tensors may be allocated in a different context - continue; - } - + for (struct ggml_tensor * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) { if (progress_callback) { if (!progress_callback((float) size_done / size_data, progress_callback_user_data)) { return false; @@ -3722,7 +3716,7 @@ static bool llm_load_tensors( } // create one context per buffer type - size_t ctx_size = ggml_tensor_overhead()*ml.n_tensors; + size_t ctx_size = ggml_tensor_overhead()*(ml.n_tensors + 1); // +1 for models where tok_embd is duplicated as output std::map ctx_map; for (auto & it : buft_layer_count) { struct ggml_init_params params = { @@ -3860,6 +3854,7 @@ static bool llm_load_tensors( } else { model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // needs to be on GPU ml.n_created--; // artificial tensor + ml.size_data += ggml_nbytes(model.output); } } @@ -4396,6 +4391,7 @@ static bool llm_load_tensors( model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // same as tok_embd, duplicated to allow offloading ml.n_created--; // artificial tensor + ml.size_data += ggml_nbytes(model.output); const int64_t n_ff = hparams.n_ff; const int64_t n_embd_head_k = hparams.n_embd_head_k;