-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patharguments.py
58 lines (51 loc) · 3.09 KB
/
arguments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import argparse
import os
import torch
# baseline default hyper parameter
# CFG = {
# 'EPOCHS':10,
# 'LEARNING_RATE':1e-4,
# 'BATCH_SIZE':256,
# 'SEED':41
# }
def parse_args():
parser = argparse.ArgumentParser()
# =========================================================================
# training args
# =========================================================================
parser.add_argument("--seed", default="41", type=int, help="Random Seed")
parser.add_argument("--batch_size", default="64", type=int, help="train : # of batch size")
parser.add_argument("--lr", default="3e-5", type=float, help="learning rate")
parser.add_argument("--epochs", default="6", type=int, help="# of epochs")
parser.add_argument("--split_ratio", default="0.2", type=float, help="train,test split ratio")
parser.add_argument("--scheduler_type", default="reduce", type=str, help="type of learning rate scheduler : reduce,lambda, linear, linear_custom")
parser.add_argument("--optimizer_type", default="adam", type=str, help="type of optimizer : adam,adamw")
parser.add_argument("--warmup_steps", default="500", type=int, help="# of warmup steps")
parser.add_argument("--use_kfold", default=True, type=bool, help="use k-fold")
parser.add_argument("--print_name", default='zz', type=str, help="name of weights file")
# =========================================================================
# Path args
# =========================================================================
parser.add_argument("--data_path", default="./data/", type=str, help="Data Path")
parser.add_argument("--output_path", default="./results", type=str, help="Output Path")
parser.add_argument("--saved_path", default="./saved", type=str, help="Saved Path")
# =========================================================================
# Model args
# =========================================================================
parser.add_argument("--max_input_length", default="128", type=int, help="Max Input Length")
parser.add_argument("--PLM", default="klue/roberta-large", type=str, help="Path to pretrained model or model identifier from huggingface.co/models")
parser.add_argument("--loss_name", default="cross_entropy", type=str, help="loss : cross_entropy, focal, f1, label_smoothing")
parser.add_argument("--use_tfidf", default=False, type=bool, help="use tf-idf")
parser.add_argument("--use_roberta", default=True, type=bool, help="use roberta")
parser.add_argument(
"--model_name",
default='roberta_document_weighted',
type=str,
help=
"BaseModel : base " \
"RobertaModel : roberta_class, roberta_dacon, roberta_linear, roberta_sds " \
"RobertaDocument : roberta_document_linear, roberta_document_sds, roberta_document_concat_hidden, roberta_document_mean_max, roberta_document_lstm, roberta_document_weighted")
# 주피터에서 사용할 경우 커널 에러 나기때문에, 밑에 있는 args=[] 로 선언해두면 편함
# args = parser.parse_args()
args = parser.parse_args(args=[])
return args