-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathvanilla_squeezenet.py
208 lines (150 loc) · 5.63 KB
/
vanilla_squeezenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
# coding: utf-8
# In[1]:
# get_ipython().run_line_magic('load_ext', 'autoreload')
# get_ipython().run_line_magic('autoreload', '2')
# In[2]:
import argparse
import os
import keras
from keras import optimizers
from keras.preprocessing.image import ImageDataGenerator
from keras.callbacks import EarlyStopping, ReduceLROnPlateau, Callback
import matplotlib.pyplot as plt
# get_ipython().run_line_magic('matplotlib', 'inline')
from squeezenet import SqueezeNet, preprocess_input
def str2bool(v):
"""
convert string representation of a boolean into a boolean representation
"""
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
# In[3]:
parser = argparse.ArgumentParser(description='Process input arguments')
parser.add_argument('--data-folder', default='/home/wopauli/256_ObjectCategories_preproc/', type=str, dest='data_dir', help='data folder mounting point')
parser.add_argument('--learning_rate', default=1e-2, help='learning rate', type=float, required=False)
parser.add_argument('--weight_decay', default=1e-2, help='weight_decay', type=float, required=False)
parser.add_argument('--momentum', default=9e-1, help='momentum', type=float, required=False)
parser.add_argument('--batch_size', dest="batch_size", default=64, help='Batch size', type=int, required=False)
parser.add_argument('--remote_execution', dest="remote_execution", action='store_true', help='remote execution (AML compute)', required=False)
parser.add_argument('--transfer_learning', dest="transfer_learning", default="False", help='use the benchmark model and perform transfer learning', type=str, required=False)
args = parser.parse_args()
data_dir = args.data_dir
learning_rate = args.learning_rate
weight_decay = args.weight_decay
momentum = args.momentum
batch_size = args.batch_size
remote_execution = args.remote_execution
transfer_learning = str2bool(args.transfer_learning)
if remote_execution:
print("Running on remote compute target:", remote_execution)
from azureml.core import VERSION
print("azureml.core.VERSION", VERSION)
from azureml.core import Run
# start an Azure ML run
run = Run.get_context()
run.log('learning_rate', learning_rate)
run.log('momentum', momentum)
run.log('batch_size', batch_size)
run.log('transfer_learning', args.transfer_learning)
run.log('weight_decay', weight_decay)
# In[4]:
# batch_size = 64
data_generator = ImageDataGenerator(
data_format='channels_last',
preprocessing_function=preprocess_input
)
train_generator = data_generator.flow_from_directory(
os.path.join(data_dir, 'train_no_resizing'),
target_size=(299, 299),
batch_size=batch_size
)
val_generator = data_generator.flow_from_directory(
os.path.join(data_dir, 'val_no_resizing'), shuffle=False,
target_size=(299, 299),
batch_size=batch_size
)
# # Model
# In[5]:
if transfer_learning:
trainable = False
else:
trainable = True
model = SqueezeNet(weight_decay=weight_decay, image_size=299, trainable=True)
model.count_params()
# # Training
# In[6]:
model.compile(
# optimizer=optimizers.Adam(lr=0.005, decay=0.01),
optimizer=optimizers.SGD(lr=learning_rate, momentum=momentum, nesterov=True),
loss='categorical_crossentropy', metrics=['accuracy', 'top_k_categorical_accuracy']
)
# In[ ]:
callbacks = [EarlyStopping(monitor='val_acc', patience=4, min_delta=0.01),
ReduceLROnPlateau(monitor='val_acc', factor=0.1, patience=2, epsilon=0.007)
]
# log progress to AML workspace
if remote_execution:
class LogRunMetrics(Callback):
# callback at the end of every epoch
def on_epoch_end(self, epoch, log):
# log a value repeated which creates a list
run.log('val_loss', log['val_loss'])
run.log('loss', log['loss'])
callbacks.append(LogRunMetrics())
model.fit_generator(
train_generator,
steps_per_epoch=50, epochs=30, verbose=1,
callbacks=callbacks,
validation_data=val_generator, validation_steps=80, workers=4
)
if remote_execution:
run.log('final_val_loss', model.history.history['val_loss'][-1])
run.log('final_val_acc', model.history.history['val_acc'][-1])
# # Loss/epoch plots
# In[ ]:
plt.plot(model.history.history['loss'], label='train');
plt.plot(model.history.history['val_loss'], label='val');
plt.legend();
plt.xlabel('epoch');
plt.ylabel('logloss');
# log this plot to the aml workspace so we can see it in the azure portal
if remote_execution:
run.log_image('Loss', plot=plt)
else:
plt.savefig('val_log.png')
plt.close()
# In[ ]:
plt.plot(model.history.history['acc'], label='train');
plt.plot(model.history.history['val_acc'], label='val');
plt.legend();
plt.xlabel('epoch');
plt.ylabel('accuracy');
# log this plot to the aml workspace so we can see it in the azure portal
if remote_execution:
run.log_image('Accuracy', plot=plt)
else:
plt.savefig('accuracy.png')
plt.close()
# In[ ]:
plt.plot(model.history.history['top_k_categorical_accuracy'], label='train');
plt.plot(model.history.history['val_top_k_categorical_accuracy'], label='val');
plt.legend();
plt.xlabel('epoch');
plt.ylabel('top5_accuracy');
# log this plot to the aml workspace so we can see it in the azure portal
if remote_execution:
run.log_image('Top k acc', plot=plt)
else:
plt.savefig('top_k_acc.png')
plt.close()
# # Results
# In[ ]:
# val_loss, val_acc, val_top_k_categorical_accuracy
if remote_execution:
run.log_list('final eval', model.evaluate_generator(val_generator, 80))
else:
print(model.evaluate_generator(val_generator, 80))