-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathEquations.tex
365 lines (283 loc) · 8.56 KB
/
Equations.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
% Created 2016-04-25 Mon 23:49
\documentclass[11pt]{article}
\usepackage[utf8]{inputenc}
\usepackage{lmodern}
\usepackage[T1]{fontenc}
\usepackage{fixltx2e}
\usepackage{graphicx}
\usepackage{longtable}
\usepackage{float}
\usepackage{wrapfig}
\usepackage{rotating}
\usepackage[normalem]{ulem}
\usepackage{amsmath}
\usepackage{textcomp}
\usepackage{marvosym}
\usepackage{wasysym}
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage[version=3]{mhchem}
\usepackage[numbers,super,sort&compress]{natbib}
\usepackage{natmove}
\usepackage{url}
\usepackage{minted}
\usepackage{underscore}
\usepackage[linktocpage,pdfstartview=FitH,colorlinks,
linkcolor=blue,anchorcolor=blue,
citecolor=blue,filecolor=blue,menucolor=blue,urlcolor=blue]{hyperref}
\usepackage{attachfile}
\usepackage{siunitx}
\usepackage[left=1in, right=1in, top=1in, bottom=1in, nohead]{geometry}
\geometry{margin=1.0in}
\usemintedstyle{emacs}
\newminted{python}{fontsize=\normalsize}
\usepackage{framed,color}
\definecolor{shadecolor}{rgb}{1.0,0.8,0.3}
\author{William F. Schneider}
\date{\today}
\title{Lecture Notes for CBE 20255}
\begin{document}
\begin{options}
\end{options}
\section{Introduction to Engineering Calculation}
\label{sec-1}
\begin{itemize}
\item Base units
\end{itemize}
\begin{center}
\begin{tabular}{llll}
\hline
Dimension & SI & cgs & English\\
\hline
Length & m & cm & in, ft, mi\\
Mass & kg & g & lb$_{\text{m}}$\\
Time & s & s & s\\
Temperature & K & K & F\\
Current & A & A & \\
Light intensity & cd & cd & \\
\hline
\end{tabular}
\end{center}
\begin{itemize}
\item Derived units
\end{itemize}
\begin{center}
\begin{tabular}{llll}
\hline
Volume & liter & L & 1000 cm$^{\text{3}}$\\
Force & Newton & N & 1 kg m/s$^{\text{2}}$\\
& dyne & & 1 g cm/s$^{\text{2}}$\\
Energy/Work & Joule & J & 1 N m = 1 kg m$^{\text{2}}$/s$^{\text{2}}$\\
& erg & & 1 dyne cm = 1 g cm$^{\text{2}}$/s$^{\text{2}}$\\
& calorie & cal & 4.184 J\\
& Btu & & 1 Btu = 1055.05585 J\\
Power & Watt & W & 1 J/s\\
& Horsepower & hp & 1 hp = 745.7 W\\
Pressure & Pascal & Pa & 1 N/m$^{\text{2}}$ = 1 J/m$^{\text{3}}$\\
& bar & & 10$^{\text{5}}$ Pa\\
& atmosphere & atm & 1 atm = 1.01325 bar\\
& torr & torr & 1/760 atm\\
\hline
\end{tabular}
\end{center}
\begin{itemize}
\item basic statistics
\end{itemize}
\begin{center}
\begin{tabular}{lll}
\emph{sample mean} & \emph{Sample variance} & \emph{Standard deviation}\\
\(\bar{X}=\sum_{1}^{n}X_{i} \) & \(s_{X}^{2}=\frac{1}{N-1}\sum_{1}^{n}(X_{i}-\bar{X})^{2}\) & \(s_{x}=\sqrt{s_{X}^{2}} \)\\
\end{tabular}
\end{center}
\section{Processes and process variables}
\label{sec-2}
\begin{itemize}
\item Density
\end{itemize}
\[\rho =\frac{m}{V}=\frac{\dot{m}}{\dot{V}} \]
\begin{itemize}
\item Pressure
\end{itemize}
\[ P = P_{0} + \rho g h \]
\[ P_{gauge} = P_{abs} - P_{atm} \]
\begin{itemize}
\item Temperature Scales
\begin{itemize}
\item Kelvin: absolute scale, 0 $\to$ $\infty$
\item Celsius: \(T(^{\circ}C) = T(K) - 273.15)\)
\item Fahrenheit: \(T(^{\circ}F) = 1.8 T(^{\circ}C) + 32 )\)
\item Rankine: absolute scale, \(T(^{\circ}R) = T(^{\circ}F)+459.67\)
\end{itemize}
\item Chemical composition
\end{itemize}
\includegraphics[width=.9\linewidth]{./figs/PeriodicTableMuted.png}
\section{Material balances}
\label{sec-3}
\begin{itemize}
\item general balance
\end{itemize}
\begin{framed}
output = input + generation - consumption - accumulation
\end{framed}
\begin{itemize}
\item Reaction progress
\end{itemize}
\begin{equation*}
n_{j} = n_{j0} + \nu_{j} \xi
\end{equation*}
\begin{itemize}
\item \emph{conversion}
\end{itemize}
\[X_{j} = \frac{n_{j0}-n_{j}}{n_{j0}} = -\frac{\nu_{j}\xi}{n_{j0}} \]
\begin{itemize}
\item Multiple reactions
\end{itemize}
\[ n_{j} = n_{j0} + \sum_{i} \nu_{ij} \xi_{i} \]
\begin{itemize}
\item \emph{yield} \(=n_{j}/n_{j}^{\text{max}}\)
\item \emph{selectivity} (often) defined as amount of desired product over amount of
undesired.
\end{itemize}
\section{Properties of single-phase systems}
\label{sec-4}
\begin{itemize}
\item Ideal solution
\end{itemize}
\[ v \text{ (l/mol)} = \sum_{i} x_{i} v_{i} \]
\[ \frac{1}{\bar{\rho}} = \sum_{i}^{n} \frac{\omega_{i}}{\rho_{i}} \]
\begin{itemize}
\item Ideal gases
\end{itemize}
\[ P V = n R T \text{ or } P v = R T \text{ or } v = \frac{RT}{P} \]
\begin{center}
\begin{tabular}{llll}
R & 8.314472 J / (K mol) & 0.082057 atm l / (K mol) & 1.3806504e-23 J / K\\
\end{tabular}
\end{center}
\begin{itemize}
\item Ideal gas mixture
\end{itemize}
\[ V(N,T,P) = V_{1}(N_{1},T,P) + V_{2}(N_{2},T,P) \]
\[ \frac{P_{1}}{P} = \frac{N_{1} RT/V}{N RT/V} = y_{1}\]
\begin{itemize}
\item van der Waals model
\end{itemize}
\[ P_{\text{vdW}} = \frac{RT}{v-b} - \frac{a}{v^{2}} \]
\[b = v_{c}/3\quad\quad a = \frac{9}{8}R T_{c} v_{c}\]
\begin{itemize}
\item reduced variables
\end{itemize}
\[ T_{r} = T/T_{c}\quad P_{r} = P/P_{c}\quad v_{r}=v/v_{c}\]
\begin{itemize}
\item Soave-Redlich-Kwong (SRK) model
\end{itemize}
\[P_{\text{SRK}} = \frac{RT}{v-b} - \frac{\alpha(T) a}{v(v+b)} \]
\begin{eqnarray*}
a & = & 0.42747 \frac{(R T_{c})^{2}}{P_{c}} \\
b & = & 0.08664 \frac{R T_{c}}{P_{c}} \\
m & = & 0.48508 + 1.55171 \omega - 0.1561 \omega^{2}\\
\alpha & = & \[1+m (1-\sqrt{T_{r}})\]^2
\end{eqnarray*}
\begin{itemize}
\item Pitzer ``acentric'' factor
\end{itemize}
\[\omega = -\log \left ( \frac{P_{sat}}{P_{c}} \right ) \Big|_{T_{r}=0.7} -1 \]
\begin{itemize}
\item Virial expansion
\end{itemize}
\[ P= \frac{RT}{v} \left ( 1 + \frac{B_{2}(T)}{v} + \frac{B_{3}(T)}{v^{2}} + \cdots \right ) \]
\begin{itemize}
\item \emph{compressibility}
\end{itemize}
\[ Z = \frac{P(v,T) v}{RT} \]
\begin{itemize}
\item Law of corresponding states
\[ Z_{c} = 0.27 \]
\end{itemize}
\section{Two-phase systems}
\label{sec-5}
\begin{itemize}
\item Clapeyron equation
\end{itemize}
\[ \frac{d P^{*}}{dT} = \frac{\Delta H_{\text{latent}}}{T(v_{b}-v_{a})} \]
\begin{itemize}
\item Clausius-Clapeyron equation:
\end{itemize}
\[ \ln \frac{P^{*}_{2}}{P^{*}_{1}} \approx -\frac{\Delta H_{\text{vap}}}{R}\left ( \frac{1}{T_{2}} - \frac{1}{T_{1}} \right ) \]
\begin{itemize}
\item Antoine equation
\end{itemize}
\[ \log_{10}P^{*} = A - \frac{B}{T+C} \]
\begin{itemize}
\item Gibbs phase rule
\end{itemize}
\[ DOF = c - \Pi - r + 2\]
\begin{itemize}
\item Raoult's Law
\end{itemize}
\[ x_{A} P^{*}_{A}(T) = P_{A} = y_{A} P \]
\[ P_{\text{bubble}} = \sum x_{i} P_{i}^{*} \]
\[ P_{\text{dew}} = \left ( \sum_{i}\frac{y_{i}}{P_{i}^{*}} \right )^{-1} \]
\begin{itemize}
\item Relative humidity
\end{itemize}
\[ RH(T) = P_{\ce{H2O}}/P^{*}_{\ce{H2O}}(T) \]
\begin{itemize}
\item Henry's Law
\end{itemize}
\[ x_{A} H_{A}(T) = P_{A} = y_{A} P \]
\begin{itemize}
\item Colligative properties
\end{itemize}
\[\Delta T_{b} \approx \frac{R T_{b}^{2}}{\Delta H^{*}_{vap}}x \]
\[\Delta T_{m} \approx \frac{R T_{m}^{2}}{\Delta H^{*}_{m}}x \]
\section{Energy balances}
\label{sec-6}
\begin{itemize}
\item Energy types
\[ E_{K} = \frac{1}{2} m v^{2}\quad\quad \dot{E}_{K} = \frac{1}{2}\dot{m} u^{2} \]
\[ E_{V} = m g h \quad\quad \dot{E}_{V} = \dot{m} g z \]
\[ U = U(T,P,x_{i})\quad\quad H=U+PV\]
\item Closed, constant volume system
\[ \Delta U + \Delta E_{K} + \Delta E_{V} - q - w = 0 \]
\item Open system at steady-state
\end{itemize}
\[ \Delta\dot{H} + \Delta\dot{E}_{K} + \Delta{E}_{P} = \dot{q} + \dot{W}_{s} \]
\begin{itemize}
\item Bernoulli equation:
\end{itemize}
\[ \frac{1}{2} \Delta u^{2} + g\Delta z + \frac{1}{\rho}\Delta P = 0\]
\section{Energy balances on non-reactive systems}
\label{sec-7}
\begin{itemize}
\item heat capacity
\end{itemize}
\[ C_{v}(T) = \left ( \frac{\partial\hat{U}}{\partial T} \right )_{v} \]
\[ C_{p}(T) = \left ( \frac{\partial\hat{H}}{\partial T} \right )_{p} \]
\begin{itemize}
\item For liquids and solids, \(C_{p} \approx C_{v}\)
\item For ideal gas, \(C_{p} = C_{v} + R\)
\end{itemize}
\section{Energy balances on reactive systems}
\label{sec-8}
\begin{itemize}
\item Reaction energy
\end{itemize}
\[ \Delta H^{\circ}_{r} = \sum_{j} \nu_{j} \Delta \hat{H}_{f,j}^{\circ} \]
\begin{itemize}
\item ``Heat of reaction'' method
\end{itemize}
\[ \Delta \dot{H} = \xi\Delta\hat{H}^{\circ}_{r} + \sum_{out}\dot{n}_{out}\hat{H}_{out}-\sum_{in}\dot{n}_{in}\hat{H}_{in} \]
\[ \Delta \dot{H} = \sum_{i}\xi_{i}\Delta\hat{H}^{\circ}_{r} + \sum_{out}\dot{n}_{out}\hat{H}_{out}-\sum_{in}\dot{n}_{in}\hat{H}_{in} \]
\begin{itemize}
\item ``Heat of formation'' method
\end{itemize}
\[ \Delta \dot{H} = \sum_{out}\dot{n}_{out}\hat{H}_{out}-\sum_{in}\dot{n}_{in}\hat{H}_{in} \]
\section{Transient processes}
\label{sec-9}
\begin{itemize}
\item General balance around any system or element of a system
\end{itemize}
\[ \dot{F}_{out}(t) = \dot{F}_{in}(t) + r(t) - \frac{dF}{dt} \]
% Emacs 25.0.50.1 (Org mode 8.2.10)
\end{document}