-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
231 lines (219 loc) · 7.28 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import torch
import argparse
import numpy as np
from resample import UniformSampler, Batch_Same_Sampler
from Model import PaD_TS
from diffmodel_init import create_gaussian_diffusion
from training import Trainer
from data_preprocessing.real_dataloader import CustomDataset
from data_preprocessing.sine_dataloader import SineDataset
from data_preprocessing.real_dataloader import fMRIDataset
from data_preprocessing.mujoco_dataloader import MuJoCoDataset
from torchsummary import summary
from data_preprocessing.sampling import sampling
from eval_run import (
discriminative_score,
predictive_score,
BMMD_score,
BMMD_score_naive,
VDS_score,
)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"-data",
"-d",
default="energy",
help="Data Name: [energy, stock, sine]",
required=True,
)
parser.add_argument(
"-window", "-w", default=24, type=int, help="Window Size", required=False
)
parser.add_argument(
"-steps", "-s", default=0, type=int, help="Training Step", required=False
)
args = parser.parse_args()
if args.data == "energy":
from configs.energy_config import (
Training_args,
Model_args,
Diffusion_args,
DataLoader_args,
Data_args,
)
elif args.data == "stock":
from configs.stock_config import (
Training_args,
Model_args,
Diffusion_args,
DataLoader_args,
Data_args,
)
elif args.data == "sine":
from configs.sine_config import (
Training_args,
Model_args,
Diffusion_args,
DataLoader_args,
Data_args,
)
elif args.data == "mujoco":
from configs.mujoco_config import (
Training_args,
Model_args,
Diffusion_args,
DataLoader_args,
Data_args,
)
elif args.data == "fmri":
from configs.fmri_config import (
Training_args,
Model_args,
Diffusion_args,
DataLoader_args,
Data_args,
)
else:
raise NotImplementedError(f"Unkown Dataset: {args.data}")
# Obtain the args from the config files
train_arg = Training_args()
model_arg = Model_args()
diff_arg = Diffusion_args()
dl_arg = DataLoader_args()
d_arg = Data_args()
if args.window != 24:
d_arg.window = int(args.window)
train_arg.save_dir = f"./OUTPUT/{d_arg.name}_{d_arg.window}_MMD/"
model_arg.input_shape = (d_arg.window, d_arg.dim)
if args.steps != 0:
train_arg.lr_anneal_steps = args.steps
print("======Load Data======")
if d_arg.name == "sine":
dataset = SineDataset(
window=d_arg.window,
num=d_arg.num,
dim=d_arg.dim,
save2npy=d_arg.save2npy,
neg_one_to_one=d_arg.neg_one_to_one,
seed=d_arg.seed,
period=d_arg.period,
)
elif d_arg.name == "fmri":
dataset = fMRIDataset(
name=d_arg.name,
proportion=d_arg.proportion,
data_root=d_arg.data_root,
window=d_arg.window,
save2npy=d_arg.save2npy,
neg_one_to_one=d_arg.neg_one_to_one,
seed=d_arg.seed,
period=d_arg.period,
)
elif d_arg.name == "mujoco":
dataset = MuJoCoDataset(
name=d_arg.name,
window=d_arg.window,
num=d_arg.num,
dim=d_arg.dim,
save2npy=d_arg.save2npy,
neg_one_to_one=d_arg.neg_one_to_one,
seed=d_arg.seed,
period=d_arg.period,
)
else:
dataset = CustomDataset(
name=d_arg.name,
proportion=d_arg.proportion,
data_root=d_arg.data_root,
window=d_arg.window,
save2npy=d_arg.save2npy,
neg_one_to_one=d_arg.neg_one_to_one,
seed=d_arg.seed,
period=d_arg.period,
)
dataloader = torch.utils.data.DataLoader(
dataset,
batch_size=dl_arg.batch_size,
shuffle=dl_arg.shuffle,
num_workers=dl_arg.num_workers,
drop_last=dl_arg.drop_last,
pin_memory=dl_arg.pin_memory,
)
# Create the model, diffusion, and schedule sampler
model = PaD_TS(
hidden_size=model_arg.hidden_size,
num_heads=model_arg.num_heads,
n_encoder=model_arg.n_encoder,
n_decoder=model_arg.n_decoder,
feature_last=model_arg.feature_last,
mlp_ratio=model_arg.mlp_ratio,
input_shape=model_arg.input_shape,
)
diffusion = create_gaussian_diffusion(
predict_xstart=diff_arg.predict_xstart,
diffusion_steps=diff_arg.diffusion_steps,
noise_schedule=diff_arg.noise_schedule,
loss=diff_arg.loss,
rescale_timesteps=diff_arg.rescale_timesteps,
)
if train_arg.schedule_sampler == "batch":
schedule_sampler = Batch_Same_Sampler(diffusion)
elif train_arg.schedule_sampler == "uniform":
schedule_sampler = UniformSampler(diffusion)
else:
raise NotImplementedError(f"Unkown sampler: {train_arg.schedule_sampler}")
trainer = Trainer(
model=model,
diffusion=diffusion,
data=dataloader,
batch_size=dl_arg.batch_size,
lr=train_arg.lr,
weight_decay=train_arg.weight_decay,
lr_anneal_steps=train_arg.lr_anneal_steps,
log_interval=train_arg.log_interval,
save_interval=train_arg.save_interval,
save_dir=train_arg.save_dir,
schedule_sampler=schedule_sampler,
mmd_alpha=train_arg.mmd_alpha,
)
summary(model)
print("Loss Function: ", diff_arg.loss)
print("Save Directory: ", train_arg.save_dir)
print("Schedule Sampler: ", train_arg.schedule_sampler)
print("Batch Size: ", dl_arg.batch_size)
print("Diffusion Steps: ", diff_arg.diffusion_steps)
print("Epochs: ", train_arg.lr_anneal_steps)
print("Alpha: ", train_arg.mmd_alpha)
print("Window Size: ", d_arg.window)
print("Data shape: ", model_arg.input_shape)
print("Hidden: ", model_arg.hidden_size)
print("======Training======")
trainer.train()
print("======Done======")
print("======Generate Samples======")
concatenated_tensor = sampling(
model,
diffusion,
dataset.sample_num,
dataset.window,
dataset.var_num,
dl_arg.batch_size,
)
np.save(
f"{train_arg.save_dir}ddpm_fake_{d_arg.name}_{dataset.window}.npy",
concatenated_tensor.cpu(),
)
print(f"{train_arg.save_dir}ddpm_fake_{d_arg.name}_{dataset.window}.npy")
print("======Diff Eval======")
np_fake = np.array(concatenated_tensor.detach().cpu())
print("======Discriminative Score======")
discriminative_score(d_arg.name, 5, np_fake, length=d_arg.window)
print("======Predictive Score======")
predictive_score(d_arg.name, 5, np_fake, length=d_arg.window)
# BMMD_score(d_arg.name, concatenated_tensor)
print("======VDS Score======")
VDS_score(d_arg.name, concatenated_tensor, length=d_arg.window)
print("======FDDS Score======")
BMMD_score_naive(d_arg.name, concatenated_tensor, length=d_arg.window)
print("======Finished======")