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CHAOTIC ATTKACTORS OF AN INFINITE-DIMENSIONAL DYNAMICAL SYSTEM
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We study the chaotic attractors of a delay differential equation. The dimension of several attractors computed directly
from the definition agrees to experimental resolution with the dimension computed from the spectrum of Lyapunov
exponents according to a conjecture of Kaplan and Yorke. Assuming this conjecture to be valid, as the delay parameter
is varied, from computations of the spectrum of Lyapunov exponcnts, we observe a roughly linear increase from two to
twenty in the dimension, while the metric entropy remains roughly constant. These results are compared to a linear
analysis, and the asymptotic behavior of the Lyapunov exponents is derived.

Contenh
. Introduction 366
P-\RT I: REVIEW OF GENERAL THEORY
2. Dimension 367
3. Metric entropy e e e e e e e e e e 370
4. Lyapunov exponents and thenr relatlon to dlmcnsmn and entropy e e e e e e 370
5. Simulating infinite-dimensional dynamical systems 7
6. Review of rigorous results for infinite-dimensional systems . 374
P-\RT II: CASE STUDY
. Phenomenology of an infinite-dimensional example 37§
8. Taking sections to visualise fractals in function space . 377
9. Computing Lyapunov exponents for delay equations 381
10. Experimental results: exponents, dimension, and entropy 383
1. Asymptotic behavior of the spectrum of Lyapunov exponents . 389
12, Comparison with a linearized analysis 390
13 Conciusions . 391
Appendix: Computational technique 392

1. Introduction

In 1963, Edward Lorenz observed aperiodic
behavior in a three-dimensional dynamical sys-
tem [i]. Lorenz’s equations are such a severe
truncation of the infinite-dimensional Navier—
Stokes =quations that their principal significance
for fluid flow is metaphorical rather than pre-
dictive. Lorenz's observations do. however,
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present the possibility that the chaotic behavior
observed in such an infinite-dimensional system
might be caused by a finite-dimensional attrac-
tor. Numerical studies of the Lorenz equations
and other low dimensional systems have pro-
detcrmmlstlc yet random behavior observed in
strange (chaotic) attractors, but the relationship
between the chaotic attractors of these low
dimensional systems and those of infinite
dimensional systems has not yet been
cstablished. Although we cannot simulate the
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Navier-Stokes equations properly, there are
other infinite dimensional systems that can be
simulated relatively simply. S

In 1971, Ruelle and Takens 21 con]ectured
that the bifurcati
bulenee shou]d

drmensron suggested by Landau [3] Expenments» V

indicate thata temporal power spectrum of ¢ a fluid
flow never contains more than a few irrationally
related discrete frequency components This
supports the Ruelle-Takens theory, but the
nature of the chaotic attractors in turbulent flows
remains a mystery.

There are several rigorous results indicating
that the attractors of many infinite-dimensional
dynamical systems are of finite dimension and
have a discrete spectrum of Lyapunov
exponents. These results, including the work of
Foias, Prodi, Teman (5, 6], Ladyzenskaya [7, 8],
Mallet-Paret [9], and Ruelle [10] are briefly re-
viewed in section 6. Despite these results, very
little is known about the structure of the chaotic
attractors of infinite-dimensional systems and
their behavior as parameters are changed. Many
questions about bifurcation sequences to “fully
developed” chaotic behavior remain to be an-
swered, among them: How quickly does the
dimension of chaotic attractors change as a
control parameter (such as the Reynolds number
in fluid flow) is varied? How steady is this
change? Do the dynamics necessarily become
more chaotic as the dimension of the attractor
increases? (L.e., does the metric entropy in-
crease?) Are the attractors of infinite-dimen-
sional systems qualitatively similar to those of
low-dimensional systems?

The answer to these and other questions
requires a detailed characterization of the
geometrical and statistical properties of an
attractor. One of the main tools useful for this is
the spectrum of Lyapunov characteristic
exponents [11, 12, 13, 14]. Roughly speaking, the
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positive exponents measure the ‘average rate of
exponentxal spreadmg of nearby trajectories
within the attractor, and the negative exponents
measure the average rate of exponential con-

: ‘1sronal k,ysterrts |

The drmensron of an attractor 18 beheved to

be related to the spectrum of Lyapunov charac-

teristic exponents, but this relationship is not
yet certain. Two conjectures have recently been
made, one by Kaplan and Yorke [15], and ano-
ther by Mori [16]. The Kaplan-Yorke con-
jecture and the Mori conjecture give identical
results for attractors of low-dimensional sys-
tems, and in this case, for many examples their
predictions have been numerically demonstrated
to be correct [17]. For higher-dimensional sys-
tems, however, their predictions may be dras-
tically different. We use an infinite dimensional
system to perform this test, and find that our
results agree with the conjecture of Kaplan and
Yorke.

This paper begins with a brief introduction to
the characterization of chaotic dynamical sys-
tems in terms of dimension, metric entropy, and
Lyapunov characteristic exponents, followed by
a discussion on the extension of these concepts
to infinite-dimensional systems, and a review of
some pertinent rigorous results. We then com-
pute these quantities for an infinite-dimensional
differential delay equation originally studied by
Mackey and Glass [13]. Our primary motivation
for choosing this example is ease of simulation.

PART i: REVIEW OF GENERAL THECRY

2. Dimension

There are several different dimensions that
can be used to describe dynamical systems and
their attractors. In this section we present brief
discussions of the phase space dimension,
topological dimension, fractal dimension, in-
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formation dimension, and embedding dimen-
ston.

The phase space dimension N is the number
of independent real numbers that are needed to
specify an arbitrary initial conditicn. The phase
space dimension is a property of a dynamical
syctem. The other dimensions we will discuss
are generally properties of sets, but we will
consider them in the context where they are
properties of sttractors.

Loosely speaking, an attractor is a subset of
the phase space of a dissipative dynamical sys-
tem. that “‘attracts” phase points from other
regions of the phase space in the basin of the
attractor. Once a phase point enters an attrac-
tor, it does not leave it. One convenient prop-
erty observed in many numerical experiments
is that almost every initial condition in a given
basin yields the same time averages, and hence
the same asymptotic probability measure [19].
Ruelle and Bowen {20} have proved that the
Lebesgue measure of an attractor of a smooth
flow is zero. This result suggests that perhaps
the (suitably defined) dimension of an attractor
is generaily less than that of the phase space
containing it. For trajectories on the attractor,
this reduction of dimension brings about an
acompanving reduction in t.e information
n~eded to specify an initial condition. For the
most general case, the number of phase vari-
ables needed to describe a trajectory is N, but
for trajectories on an attractor this number may
be less than N. The various dimensions defined
below seek to make the concepts of “‘in-
formation required o specify an initial con-
dition™ and ‘“degrees of freedom on the attrac-
tor” more precise.

One of the oldest notions of dimension is that
of topological dimension, developed by Poin-
curé, Rrouwer, Menger, Urhsohn, and others
".il. The topological dimension iS an integer
that makes rigorous the notion of the number of
“locally distinct directions™ in a set. Since we
are not going to make very much use of this
concept, and since the definition is somewhat

involved, we refer thz reader to Hurewicz and
Wallman [21].

For a dynamical system with an N-dimen-
sional phase space, let n(e) be the number of
N-dimensional balls of radius € required to
cover an attractor. The capacity, or fractal
dimension [22] is

_ .. logn(e)
DF—I.‘E [log el M

When a set is “simple”, for example, a limit cycle
or a torus, the fractal dimension is an integer
equal to the topological dimension. The classical
example of a set with a noninteger fractal
dimension is Cantor's set. (Sets whose fractal
dimension exceeds their topological dimension
are called “fractals’ by Mandelbrot [22].) To
construct Cantor’s set, delete the middle third of
a line segment, then delete the middle third of
each remaining piece, and so on. The fractal
dimension is log 2/log 3. Smale’s horseshoe [23),
and many otker constructions of chaotic map-
pings have an analogous structure; numerical
simulations of dynamical systems with chaotic
attractors, such as the example studied by
Henon [24], indicate that such structure occurs
for chaotic attractors.

To understand the physical meaning of the
fractal dimension, suppose that the N coor-
dinates of a dynamical system are measured by
an instrument incapable of resolving values
separated from each other by less than an
amount €. For convenience, assume that all the
coordinates are measured with equal precision.
The instrument thus induces a partition that
divides the phase spac: into elements of
equal volume. To an observer whose only a
priori knowledge is a list of the n(e) partition
elements that cover the attractor, the amount of
new information gained upon learning that the
phase point describing the state of the system is
in a given partition element is log n(e). If the
resolution of the measuring instrument is in-
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creased, the number of partition elements
needed to cover the attractor goes up roughly as
€™, Thus, assuming that all partition elements
are equally likely, for small ¢ the amount of
new information obtained in a measurement is
roughly

I =log n(e) = Dgjlog ¢|. ?

For most chaotic attractors, however, the
elements of a partition do not have equal prob-
ability. Assume that each element of a partition
has probability P. On the average, the amount
of information gained in a measurement by an
cbserver whose only a priori knowledge is the
distribution of probabilities {P;} is

n(e)
I(e)=~ g P log P 3)

This leads to a generalization of the fractal
dimension:

C)

This dimension was originally defined by Bala-
toni and Renyi [25] in 1956. They refer to it
simply as the ‘“dimension of a probability dis-
tribution”. In order to avoid confusion with
other dimensions, however, we will refer to this
as the inforination dimension. Since log n(e) =
I(¢€), the fractal dimension Dr is an upper bound
for the information dimension D;. We will refer
to sets whose fractal dimensions exceed their
information dimension as ‘“probabilistic frac-
tals '. To construct an example, begin with a
uniform probability distribution on the interval,
and rather than deleting the middle third, make
it less probable than the outer thirds, Then
repeat this process for each third, and so on.
The limiting set has a fractal dimension of one,

but an information dimension less than one.
(See ref. 26.)

For an attractor of information dimension D,
the amount of information gained in a
measurement made using instruments of
resolution € is :

I(e) = Dyjlog €|. &)

For a more complete discussion of the in-
formation dimension in the context of dynami-
cal systems, see ref. 26. Work on this topic has
also been done recently by Yorke [27].

Thus, the notion of “information required to
specify an initial condition” can be described in
terms of the information dimension. The notion
of “degrees of freedom”, however, is perhaps
most appropriately described by another
dimension, which we will refer to as the
embedding dimension. An embeddisg is a
smooth map f: X = Y that is a diffeomorphism
from a smooth manifold X to a smooth sub-
manifold Y. Define the embedding dimension
M cf an attractor as the minimum dimension of
a subset of Euclidean space into which a
smooth manifold containing the attractor can be
embedded. M variables are sufficient to con-
venient’ and uniquely specify a point on an
attractor, and it is in this sense that the embed-
ding dimension is the number of degrees of
freedom.

If there is a smooth manifold containing the
attractor of dimension m, then the Whitney
embedding theorem guarantees that its embed-
ding dimension will be M=2m+1. Un-
fortunately, chaotic attractors are not in goneral
smooth manifolds, and a relationship between
the embedding dimension and other dimeasions
(e.g. fractal) of attractors has not yet been
proven.

Note that the fractal dimension, information
dimension, and embedding dimension all require
a metric on the phase space. The information
dimension, in addition, requires a probability
measure.
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3. Metric entropy

One of the essential differences between
chaotic and predictable behavior is that chaotic
trajectories continuaily generate new infor-
mation. whereas predictable trajectories do not.
The metric entropy makes this notion precise.
In addition to providing a good definition of
“chaos™, the metric entropy provides a quen-
titative way to describe *“how chaotic” a
dynamical system is.

Suppose a phase space is partitioned into n
clements, each of which is assigned a symbol s;.
Consuler a sequence Sj{m) of m successive
measurements made at a time interval At,
S;(m) =s,.8i....85,. Let P(§;(m)) be the
probability of the sequence S;(m), normalized
so that T;P(S§i(m)) = 1. The amount of infor-
matior: contained in sequences of length m is

In = = X P(S,(m))log P(S;(m)). (6)
)

Taking the maximum value over all possible
partitions B finite. the metric entropy is the in-
formation per unit time in a sequence of
measurements,

L,
h = sup AT (WA

For predictabie dynamical systems, eventually
new measurements provide no further new in-
formation, and the metric entiopy is zero. For
chaotic dynamical systems new measurements
continue to provide new information, and the
metric entropy is positive.

As defined here, the metric entropy depends on
the set of probabilities P(S;(m)). This in turn may
depend on the choice of initial condition. (An
initial point on an unstable limit cycle, for exam-
ple. may give a qualitatively different sequence of
measurements than a point not on a limit cycle.)
Nevertheless, we will assume that almost every
point within the basin of an attractor yields the
same himiting value for h (almost every in the
sense of Lebesgue measure). With this assump-

tion the metric entropy can be considered to be a
property of an attractor.

More con.plete discussions of the metric
entropy can be found in refs. 20, 2€, and 28 to 33.

4. Lyapunov exponents and their relation to
entropy and dimension

The spectrum of Lyapunov characteristic
exponents provides a summary of the local
stability properties of an attractor. In addition,
there is good evidence that the metric entropy
and information dimension of an attractor can
be expressed in terms of the spectrum of
Lyapunov exponents. The spectrum of
Lyapunov exponents will be our primary tool
for studying attractors. In this chapter we define
the Lyapunov exponents, and review the con-
jectures and theorems relating the spectrum of
Lyapunov exponents to dimension and entropy.

The stability properties of a system are
determined by behavior under small pertur-
bations. A system can be stable to perturbations
in certain directions, yet be unsiable to pertur-
bations in others. All possible perturbations can
be examined simultaneously by following the
evolution of an ensemble of points that is in-
itially contained in a small N -dimensional ball,
where N is the phase space dimension. This
should motivate the following definition of the
spectrum of Lyapunov exponents:

Consider a dynamical system of dimension N.
Imagine an infinitesimal ball that has radius €(0)
at time t =0. As this ball evolves under the
action of a nonuniform flow it will distort. Sinze
the ball is infinitesimal, however. this change in
shape is determined only by the linear part of
the flow, and it remains an ellipsoid as it
evolves. Call the principal axes of this ellipsoid
at time t (t). The spectrum of Lyapunov
exponents A; for a given starting position is

=i i 1 6_‘lt_)
it s ®
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There are N Lyapunov exponents in the spec-
trum of an attractor of an N-dimensional
dynamical system. Positive Lyapunov
exponents measure average exponential spread-
ing of nearby trajectories, and negative
exponents measure exponential convergence of
trajectories onte the atiractor. Note that the
sum of the Lyapunov exponents is the average
divergence, which for a dissipative system, must
always be negative.

For sufficiently dissipative systems, there are
many examples where numerical evidence in-
dicates that the values of the Lyapunov
exponents are the same for almost every point
in the basin of an attractor. In these cases, the
spectrum of exponents may be taken to be a
property of an attractor, independent of initial
condition. Since this assumption seems to be
justified for our example, we will assume
throughout that this is the case.

We will always assume that the Lyapunov
exponents are arranged in decre¢asing order.
The qualitative stability properties of an attrac-
tor can then be conveniently summarized by
indicating +, 0, or —, according to the sign of
each exponent. Thus [+,0, -], for example,
might indicate a chaotic attractor in a three-
diniensional phase space, with (on the average)
exponential expansion on the attractor, neutral
stability along the flow, and exponential con-
traction of trajectories onto the attractor. Note
that for continuous flows, attractors that are not
fixed points always have at least one exponent
equal to zero, since on the average points along a
trajectory confined to a compact set can neither
separate nor merge.

4.1. Relation to dimension

To gain an intuitive understanding of the
relation between dimension and the spectrum of
Lyapunov exponents, it is easiest to begin with
simple attractors. If an attractor has a spectrum
[~.=,=,...]), since the flow is contracting in
every direction, the attractor is a fixed point,

and has dimension zero. A spectrum [0, —,...]
indicates that the attractor is a limit cycle, of
dimension one. Similarly, a spectrum
[0,0, —,...] indicates that the attractor is a two-
torus. o

For simple attractors such as those above, the
notion of dimension is unambiguous, and the
relationship to the spectrum of Lyapunov
exponents is clear. Chaotic attractors, in con-
trast, can be fractals [22], or probabilistic frac-
tals [26]; this complicates the relationship be-
tween the dimension and the spectrum of
exponents. As discussed in section 2, at least
four distinct dimensions can be assigned to a
chaotic attractor. It is a nontrivial problem even
to determine which of these dimensions shouid
be related to the spectrum of Lyapunov
exponents.

Two conjectures have recently been put forth
to relate the dimension to the spectrum of
Lyapunov exponents. Kaplan and Yorke [15]
define a quantity they call the Lyapunov
dimension

Ai

='+-'—=—|-—— 9
DL J |A1+]|, ( )

where j ic the largest integer for which A+
++-+A;=20. Kaplan and Yorke conjecture that
the Lyapunov dimension is equal to the in-
formation dimension [27]. Mori [16], in contrast,
has conjectured that the fractal dimension Dy of
an attractor is

k
A
De=d+-1—, (10)

ALY

where d is the number of non-negative
exponents, k is the number of positive
exponents A/, and | is the number of negative
exponents A;. For continuous systems of phase
space dimension three or less, or discrete sys-
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tems of dimension two or less, these two for-
mulas give the same result. For larger dimen-
sional systems, their predictions may differ.
This is especially apparent in infinite dimen-
sions. In this case the number of exponents is
infinite, and their values decrease monotonic-
ally. so the denominator in eq. (10) is infinite.
Therefore, Mori's formula predicts that the
fractal dimension D¢ of an infinite dimensional
dynamical system is always an integer, i.e. D=
d. In contrast, Kaplan and Yorke’s formula
depends only on the largest j+ 1 exponents,
rather than the entire spectrum, so that their
formula does not necessarily distinguish infinite-
from finite-dimensional systems.

Frederickson, Kaplan, and Yorke [34] have
simulated several discrete mappings, and com-
puted their Lyapunov dimension. They do not
compute the information dimension, but they
show that it agrees qualitatively with the
i.yapunov dimension. Russel et al. [17] have
calculated the fractal dimension directly from
the definition for a few examples, and compared
it to that predicted from the exponents. They
find good agreement, but unfortunately none of
the cases they studied are of sufficiently large
dimension to distinguish between Mori's con-
iecture and the Kaplan-Yorke conjecture. Qur
example does distinguish between these two
corjectures: We find non-integer dimensions
according to the Kaplan-Yorke conjecture. (See
section 8)

4.2. Relation to metric entropy

We  defined the spectrum of Lyapunov
exponents in terms of the evolution of a smali
ball. This ball can also be considered to
represent an ensemble of points, modeling the
uncertainty in an initial measurement. The dis-
cusston about stability can then be rephrased in
the language of information theory. The average
initial rate at which the information contained in
a4 measurement corresponding to a smail ball

decays corresponds, at least for smocth
measures, to the metric entropy [35]. If a fine,
uniform partition is made of the phase space,
the initial exponentizl rate at which new par-
tition elements are filled by the evolving
ensemble of points is determined by the positive
Lyapunov exponents. The preceding discussion
is intended to motivate the following relation-
ship:

4=

hy = AL (1)

=1

N

h, is the metric entropy, and A are the positive
Lyapunov exponents. Pesin [36] originally
proved this for flows with an absolutely con-
tinuous invariant measure, and it was also
proved by Ruelle and Bowen [20] for Axiom-A
flows. This relationship is also supported by
numerical computations on one-dimeasional
mappings [37]). For the calculations performed
here, we will assume that the metric entropy can
be computed using eq. (11). We previously
defined a chaotic attractor us any ~ttractor with
positive metric entropy; according to this rela-
tionship, a chaotic attractor is also any attractor
with a positive L.yapunov exponent.

5. Simulating ir finite-dimensional dynamical
systems

A dynamical system is infin'te dimensional if
an infinite set of independent numbers are
required to specify an initial condition. For
example, to describe the state of a classical fluid

M . : A slal (3
at any given time the velocity and possibly other

functions must be specified at an infinite number
of spatial points. The example we will study in
this paper is a delay diffcrential equation of the
form

X(8) = i"(x(t), x(t — 1)), (12)
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where 7 is a delay time. To calculate x(t) for
times greater than t, a function x(t) over the
interval (¢, t — v) must be given. Thus, equations
of this type are iminite dimensional.

To simulate the behavnor of infinite-dimen-
sional systems on a computer it is necessary to
approximate the corntinuous evolution of an
infinite-dimensional system by a finite number
of elements whose values change at discrete
time steps. In this manner a continuous infinite-
dimensional dynamical system is replaced by a
finite-dimensional iterated mapping. There is no
unique method for doing this. The simulation of
partial differential equations, for example, may
be accomplithed by conversion to a set of
ordinary diffcrential equations for the Fourier
modes, or by various methods that use the
values of the spatial functions at a finite number
of lattice points. With either type of method, a
variety of different integration schemes are
possible, each corresponding to a different
iterated mapping.

Note: To simuiate on a digital computer, in
addition to the finite dimension approximation,
the continuous variable must be approximated
by a finite number of states. We will not deal
with the ramifications of this latter assumption
here. (See ref. 37.)

For nonlinear equations that cannot be solved
analytically, there is no rigorous method to
make certain that a simulation is faithful to the
equations. There are, however, certain in-
dicators: The behavior of the simulated system
must agree for any cases where analytic solu-
tions are known; the behavior of the simulation
should converge as the resolution of the simu-
lation increases; and, simulations by several
different “proper” methods should all give
similar results. We will refer to any simulation
scheme that satisfies the above criteria as a
proper simulation. It is common practice to
assume that proper <iiculations accurately
represent the equations be/ng simulated; this
assumption will be made here.

The existence, uniqueness, and general prop-

erties of the spectrum of Lyapunov exponents
in infinite dimensions are not trivial problems.
Some aspects of these questions are reviewed in
section 6. Simulations, hewever, are necessarily
finite dimensional, so th:t the theory of finite
dimensional dynamical systems can be applied
[38]. In this paper, v = apply the criteria given
above, hope that our simulation is therefore
representing properties of the continuous equa-
tion, and compute the spectrum of Lyapunov
exponents of the simulation. When the resolu-
tion of our simulation is refined so that the
dimension of the simulation goes from N to 2N,
for N sufficiently large, we find that the first N
exponents of thie refined system are ap-
proximately the same as those of the original
N-dimensional system. (Recall that an N-
dimensional dynamical system has exactly N
exponents.) The fact that this procedure con-
verges for a few test cases at very high resolu-
tion provides the justification for our assump-
tion that the spectrum of exponents we compute
is approximately that of the infinite dimen-
sional equations.

As will be more apparent from the discussion
in section 9, a computation of the largest m
exponents of an N-dimensional proper simula-
tion is equivalent in computational difficulty to
the iteration of an mN-dimensional mapping.
Fortunately, the largest m exponents may be
computed without computing the N — m smaller
exponents.

In general, to gain a geometric picture¢ of an
N-dimensional dynamical system, all N coor-
dinates of the system must be taken into ac-
count. However, if an attractor has an embed-
ding dimension M <N, only M va.iables are
needed to determine a trajectory on the attrac-
tor. For example, the existence of a stable fixed
point may be seen with only one coordinate; a
picture of a limit cycle can be drawn with only
two, and so on. Any dynamical visualization
entails this sort of projection of the infinite (or
large N)-dimensionzl dynamics onto some
lower dimensional space. In this paper we will
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make use of projeciions to study the geometry
of the attractors we are interested in. Just as
there is some arbitrariness in the integration
scheme used to simulate a dynamical system, so
the projections used io study a system are also
somewhat arbitrary. After testing several pos-
sibilities in each case (and getting equivalent
results) we will assume that the properties we
see are independent of the projection we use.

6. Review of rigorous results for infinite-
dimensional systems

There are several theoretical questions that
have simple answers for finite-dimensional
dynamical systems, but become more delicate in
the context of infinite-dimensional systems. For
example: Are the attractors of infinite-dimen-
sional systems generally of finite dimension?
Does the spectrum of Lyapunov exponents
exist. and if so. is it discrete? Rigorous results
that address these questions will be reviewed in
this section.

The qualitative theory of dynamical systems
ased by Ruelle and Takens for their picture of
turbulence applies only to finite-dimensional
systems. “ut they argued that their finite
dimersional results would hold for many
infinite-dimensional dynamical systems by vir-
tue of the Center Manifold Theorem. This
theorem sutes that when a stable fixed point of
an infinite dimeasional dynamica! system turns
unstable with a pair of eigenvalues acquiring
positive real par: as a parameter is varicd, there
exists a finite dimensional invariant attracting
center manifold {38].

There are other mathematical results that give
credence to the idea that chaotic behavior in
infinite dimensional dynamical systems might be
explained by finite-dimensional chaotic attrac-
tors. Ladyzhenskaya [7,8] has generalized
results of Foias, Prodi, and Temam [5,6] to
show that time-depzndent solutions of the

Navier-Stokes equations are homeomorphic to
a compact subset of R™ for m sufficiently large.
Using slightly different techniques, Mallet-Paret
(9] has proven the following theorem:

Theorem (Mallet-Paret [9]). Let H be a separ-
aole Hilbert space, and suppose

ACUCH,

where A is compact and U is open. Let

T:U->H

be C' (have a continuous Frechet derivative)
and be ‘“‘negatively invariant,” that is T(A)D A.
Suppose further there is a linear subspace C C
H with

IDT (x)|¢ | <1, forall x € A and codim C <.

Then the topological dimension of A is finite.

Mallet-Paret uses this theorem to prove that
the attractors of delay equations such as the
example we study here are finite dimensional.
Unfortunately, neither this theorem nor the
results of Foias, Prodi, Temam, and Ladyz-
henskaya set any bounds on the dimension of
the attractor.

The existence of Lyapuiiov exponents in
finite-dimensional dynamical systems has been
known since Oseledec [11]. Under certain
assumptions, Ruelle [10] has recently proved the
existence of Lyapunov exponents for infinite-
dimensional dynamical systems. For the cases
he considers, Ruelle's theorems assure us of a
discrete spectrum of Lyapunov exponents, and
moreover of a finite number of positive
Lyapunov exponents.
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PART II: CASE STUDY

7. Phenomenology of an infinite-dimensional
example

The equation we will studfy.here is a delay
differential equation of the form

B0 = Fx(t), x(t =), B )

In order to be well posed, a problem in this form
needs as initial data the value of the function
x(t) over an interval of length 7. Delay equa-
tions such as eq. (13) describe systems in which
a stimulus has a delayed response. There are
many practical examples from control
theory, economics, population biology, and
other fields.

The example used for this investigation is a
model of blood production due to Mackey and
Glass [18]:

— Glx-r
1+ x¢

X - bx. (14)
x, is the variable at a delayed time, ie. x, =
x(t = 7). In this study we keep the parameters a,
b, and ¢ fixed at a=0.2, b =0.1, and ¢ = 10,
and vary the delay time 7. x(t) represents the
concentration of blood at time t, when it .s
produced, and x(t—7) is the concentration
when the *“‘request” for more blood is made. In
patients with leukemia, the time t may become
excessively large, and the concentration of
blood will oscillate, or if T is even larger, the
concentration can vary chactically, as demon-
strated by Mackey and Glass. The qualitative
behavior of this equation is quite similar to a
model for the population of whales studied by
May [40]. See also the two variable discrete
delay equation studied by Shibata and Saito
[41].

We will now describe some of the changes
that occur in the qualitative nature of the
attractors as the parameter r is varied. A linear
stability analysis shows that, with a, b, and ¢ as
given above, there is a siable fixed point attractor

for T <tan™'(—4)/0.4 = 4.53. For 4.53<7<13.3,
numerical simulations show that there is a stable
limit cycle attractor. At r=13.3, the period of

this limit cycle doubles, initiating a period dou-
“bling bifurcation sequence [42] that reaches its

accumulation parameter at + = 16.8. For = > 16.8
numericai simulations show chaotic attractors at
most parameter values, with some limit cycles
interspersed in between.

To study the qualitative nature of the attrac-
tors of this dynamical system, we will employ a
variety of methods. We begin using two of the
more common methods, namely to display a
representative portion of a time series, fig. 1,
and the power spectrum, shown in fig. 3. In
addition, we show a few phase plots in fig. 2,

Q

L"-‘\ _ /A a A\ I\ A A /\v
S vy AW
AT AY)

L A 1 L [ I — j
Fig. 1. Represcntative samples of time scries generated
using eq. (14), with a =02, b=0.1, c = 10 (a) 7= 14. (b)
r=17. (¢) 7=23. (d) 7=300, where v is the delay
parameter. A constant function was used as an initial con-
dition; before plotting, the equation was iterated long

enough to let transieats die out. The total time span shown
in each frame is 500 time units.




376

J.D. Farmer/Chaotic attractors of an infinite-dimensional dynamical system

e T T T Tt T Y =T L} ¥ Y T TTTYTY
| 4 k ~
- - -
S E
- b
- 9 p
9
| o L -
. S -
L
o p 3 e
. o
- - -
5 p S .1
E L. o
L
L p - -
| - A L A i A A 'y 1 . A L__‘L A A i § A A i '} s A A L.
T L v T T Y L T T AJ Al Ll v Al Bl L] AJ T AJ R A Al v v
b B -
L p 9
L 4 s
- 4 9
L 4 L
- . 5
L 11
L 4 L.
L p L
L p L
L 4 L
5 B L
SR WU VIS VN SN OHVS VSO R RSN WO WY SO |

Fig. 2. Phase plots obtained by plotting x(£) vs. x(t - 1), alter letting transients relax. The parameter values are the same as those of

tak (d), (o) and (d) of fig. 1.

made by plotting x(1) against (¢t — 7). (Note that
the choice of x(t - 7) as the other phase variable
is arbitrary: x(¢ — ¢) could equivalently be used,
where t' 1s an arbitrary time delay.) As we shall
see, these methods are adequate to distinguish
periodic behavior from chaotic behavior, but are
inadequate to make a sharp distinction between
the properties of qualitatively different chaotic
behavior; this distinction requires a computation
of the spectrum of Lyapunov exponents.

Let us begin by comparing fig. 1a, a periodic
time series, to fig. 1b, a chaotic series near the
“onset”. Although the chaotic series seen in fig.
b 1s approximately periodic, a careful examina-
tion reveals that it is not. This is more apparent in
the nhase plots: The limit cycle forms a closed
foop. but the orbit of the chaotic attractor ap-
pears to fill out a continuous band. Similarly, the

power spectrum of the limit cycle, fig. 3a, is
composed of delta functions (the small amount
of broadening is due to the finite length of the
time record). In contrast, although the power
spectrum of the chaotic attractor, fig. 3b, con-
tains fairly sharp peaks, it also has broadband
components. Note: As we will see later (fig. 42),
this attractor is actually a two band,
semiperiodic chaotic attractor [43, 44, 45] asso-
ciated with the period doubling sequence. As
shown in ref. 46, the power spectra of these
attractors always contain shacp peaks, since
they are approximately phase coherent [47].

An examination of the time series and po'ver
spectra shows that the chaotic attractors at lar-
ger values of T contain motion on more different
time scales than the ‘“‘onset” chaos at t=17.
The phase plots at larger values of r are con-
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Fig.3. Power spectra for the examples used in fig. t and fig. 2. Each spectrum is constructed with 100 averages, each of 4096 samples
taken at intervals At = 3.75. These plots are on a semilog scale, and cover 8 orders of magnitude.

siderably more complicated, and the spectra
contain less pronounced peaks. At r =300, the
motion is quite aperiodic, and the spectrum
s.aows an exponentially decaying envelope, with
a curious modulation superimposed on it. (We
were unable to isolate any numerical artifacts
that might cause this modulation; insofar as we
were able to determine, it is a real effcct.)

Several important questions about these
attractors remain unanswered, for example:
What is the dimension of these chaotic attrac-
tors? A more detailed understanding requires an
examination of Poincaré sections, or, if this fails
(as it will if the dimension of the attractor is
greater than three), a computation of the spec-
trum of Lyapunov exponents. This is done in
the following sections.

Note: The numerical methods used to obtain

the results presented in this paper are discussed
in the appendix.

8. Taking sections to visualize fractals in
function space

In this section we demonstrate how phase
variab'cs may be arbitrarily chosen (within
limits), and used to construct a cross section
picture of an attractor. We use this method,
together with computations of the fractal
dimension and the spectrum of Lyapunov
exponents (see section 9), to demonstrate that
the Kaplan-Yorke cenjecture (eq. (9)) gives a
reasonable approximation to the dimension,
whereas the Mori conjecture (eq. (10)) does not.

To see the geometrical structure of an attrac-
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tor. & picture can be made of the intersection of
the attractor with a transverse surface. In order
to do this, it is necessary to choose phase vari-
ables. For example, we chose x;=x(1), x»=
x{i— 7). xa=x(t - 1), with 7, = 10, and 7, = 20.
Starting from an (arbitrarily chosen) constant
initial function, after integrating long enough to
insure tnat the trajectory was close to the
attractor, we made a plot of x: vs. t; whenever
x; = 0.85. For the limit cycle shown in fig. 24, for
example. the picture obtained consists of four
dots, corresponding to the points where the

AR VIIVEL  RIIC

curve cuts through the plane defined by x,=
0.85.

Fig. 4a shows a :ross section constructed for
=17, a parametcr value close to the initial
transition to chaos at r = 16.8. This attrac®or
shows the char. teristic band structure, Hr
semiperiodicity {4.,43, 44}, that occurs on tne

Fig. 4. A cross section of the chaotic attractor for r =17,
(See figs. 1a, 2a, and 3a.) These sections are constructed by
plotting x(¢ —71) vs. x{t— ) whenever x(t)=0.85, with
1= 10, and 2= 20. In this fiyure, as well as figs. 5-7, the
blowups shown in (b) and (c) are constructed by plotting
only those points that lie within the box indicated in figs. (a)
and (b). The number of points indicated is the total number
of points generated, rather than the number of points that
actually appear in the figure. The dimension Dr listed in
each case is the fractal dimension computed directly from
the definition. as described in the text. This should be
compared with the dimensions computed from the spectrum
of Lyapunov exponents, shown in table I. Fig. 4a contains
1500 points, while (b) and (¢) were constructed from 200,000
points. For this figure, Dy = 1.13.

chaotic side of period doubling sequences. Four
strips, two with trajectories coming out of the
plane, and two with trajectories into the plane,
can be seen in the figure. Figs. 4b and 4c are
blowups of pieces of this cross section at suc-
cessively greater resolution. This chaotic
attractor has a simple, self similar microscopic
structure, reminiscent of Henon'’s map [22],
except that the structure is simpler. At each
scale of resolution only two sheets are discern-
ible to the eye. A careful perusal of fig. 4c
suggests that the top sheet is slightly more
probable than the bottom sheet. Assuming that
this structure is also perpetuated on all scales,
this indicates that this attractor is a probabilistic
fractal. (See section 2 and ref. 26.) However,
since the probabilities of the two sheets are not
drastically different, the fractal and information
dimension should be fairly close in value.
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In order to test the Kaplan-Yorke and Mori
conjectures, we ideally should compute both the
fractal dimension and the information dimen-
sion directly from their definitions. and compare
the values obtained to the values predicted from
the spectrum of Lyapunov exponents usmg eqs.
(9) and (10). We made direct computatmns only
of the fractal dimension. The information
dimension is a lower bound on the fractal
dimension, so that the Kaplan—Yorke conjecture
can be considered to give a lower bound on the
fractal dimension. For the two cases where we
made an accurate computation of the fractal
dimension, the agreement we find between the
fractal dimension and the computations of
Kaplan and Yorke's Lyapunov dimension in-
dicates that the information dimension and the
fractal dimension are quite close, so that our
failure to compute the information dimension is
not a serious problem.

To directly compute fractal dimension, we
divide the region of the cross section containing
the attractor into a grid of resolution 1/e by 1/e,
where 1/e varies from 64 to 1024 in powers of two.
We integrate the equation under study to ac-
cumulate at least 10° points on the cross section.
At each level of resolution the number n of
squares of the grid that are filled by points of the
attractor is counted. The estimated dimension of
the cross section is the slope of log n vs. log 1/e.

Since the attractor is continuous along the flow,
the fractal dimension of the attractor is the fractal
dimension of the cross section plus one. For

TABLE 1

A compariscn of the fractal dimension computed directly
from the definition, to the diraension calculated from the
spectrum of Lyapunov exponeats according to conjectures
by Kaplan and Yorke and Mori.

Dimension Dimension
from from Dimension
definition Kaplan-Yorke from Mori
Delay eq. (1) eq. (9) eq. (10)
17 2.13+0.03 2.10£0.02 2
23 2.76 + 0.06 2.82+0.03 2
218 >28 3.04::0.03 2
30 >2.94 3.58+0.04 3

reasons of convenience, however, for this study
we use1 a two dimensional projection of the
(infinite dimensional) cross section, as shown i
figs. 4-7. If the dimension of the attractor cxceeds
three, two dimensional squares will not form an
adequate cover of the sectio: 1, Al d the computed
result i is necessanly a lower bound.

We assume that fractal dimension measured in
this way is independent of the choice of cross
section. A few numerical experiments that we
have performed support this, as does the
agreement between predicted aund measured
values, but we Jdo not know of any results that say
that this will be true for the general case.

Table I contains estimates of the dimension
made at four values of 7. In order to estimate the
accuracy of these estimates, the dimension was
computed twice, once with n(1/1024), and again
without it. The quoted error bars are the
difference between these two estimates.

For 7 = 23.8 and r == 30, for small values of € it
was not feasible to generate enough data points to
get n to converge. Since this problem becomes
worse as € decreases, this effect systematically
lowers the estimate of the dimension. Thus, for
these values of 7 the results given in table I are
merely lower bounds. Note that if the Kaplan-
Yorke conjecture is correct, the dimension of the
attractor exceeds three for these parameter
values, and the computed result is a lower bound
in any case.

For fig. 4a, we found the largest Lyapunov
exponents in the spectrum of this attractor to be
[0.007, 0, —0.¢C71, —0.15,...]. (See section 9 for
the method of computation of the Lyapunov
exponents.) A direct computation of the fractal
dimension of the attractor gives Dg = 2.13. This
agrees to experimental accuracy with the
Lvapunov  dimension computed from the
Kaplan-Yorke conjecture (see table I). This
does not agree with the integer value 2 predicted
by Mori’s conjecture.

A single cross section does not do justice to
the complexity of the global structure of this
attractor. By making many parallel cross sec-
tions covering the attractor, the entire attractor
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Fig. 5. See the caption to fig. 4. and table 1. The delay
parameter =23, and D= 1.76. Fig. Sa contains 10,000

points: (b) and (¢) were constructed from a total of 760,000
crossings of the section.

can be reconstructed. When this was done for
=17, forty different cross sections were
needed to make it possible to smoothly inter-
polate between the sections. The section shown
in fiz. 4 is one of the simpler cases. For many
cross sections, the sheetlike structures overlap,
indicating that this attractor cannot be embed-

ded in three dimensions, at least with this choice
of cooiuinates. Several different values of 7,
and 7, were tried, out none of these proved
adequate for a three dimensional embedding.
One interpretation is that, although this attractor
has a fractal dimension of approximately 2.13,
the embedding dimension M = 4.

As the delay parameter is increased, for most
parameter values the dimension increases, and
the attractor generally becomes more com-
plicated. A cross section of the attractor at
T =23.0, where the dimension is the order of
2.8, is shown in fig. 5. A glance suggests sheet-
like structure, but a closer examination reveals
stray points. This is particularly apparent in fig.
Sc. We suggest the following interpretation: All
these points lie on sheets, but some sheets are
much more probatle than others. This theory is
borne out by making several plots of the same
section, with differing numbers of points on
them (not shown here). As the number of points
is increased, points that do not appear to lie on
sheets gain neighbors that suggest sheets.
Nevertheless, new points appear elsewhere that
do not appear to lie on sheets, indicating sheets
that are even less probable. (As argued in ref.
26, this inequity of probability is to be expected
for a chaotic attractor.) At the level of resolu-
tion obtainable tor these numerical experiments,
it is not possible to see self-similar scaling for
this attractor; blow-ups of different pieces give
pictures that are quite different in appearance.

When r is raised to 23.8, the Lyapunov
dimension (eq. {10)) of the attractor exceeds
three, and a section of ihe attractor should fill in
(fig. 6). There ar~ indications that this will even-
tually happen as the number of points is in-
creased, but because of the unequal distribution
of probabilities the number of points required to
see this take place at the resolution of the
plotter is prohibitively large.

The attractor at r =23.8 only has two non-
negative exponents, so there are only two
directions in which the phase space is not con-
tracting. However, according to the Kaplan and
Yorke conjecture, its dimension exceeds three.



1. Farmer|Chaotic attractors of an infinite-dimensional dynamical system 381

¥ Y T T LAe Y T T T T T
Dte s -~
e ', . T
N .
T ~ R
';'. K al '
. - . .
a3 :
e ! ‘
B i
. e
: . . c
al
p . .. “'“
LR
-
p .. o
- N
- L e
-t ., . -
b T e g et
PR RIS,

SR RLY 4 . L. . oot
i"';.'_ % . . Ct R < -
RN MR et AR et
P, LR W 1 i (ORI § 3 S

Fig. 6. See the caption to fig. 4, and table 1. The delay
parameter 7 =23.8, and D> 1.8. (See caption of table 1.)
Fig. 6a contains 10,000 points; (b) and (c) were constructed
using 200,000 crossings of the section.

Notice that in fig. 6 pronounced sheetlike struc-
tures are present. It appears as though most of
the points lie on sheets, but a few of them
“diffuse” outward to fill the section. (Compare
to fig. 5.) Thus, the cross sections indicate that
the Kaplan-Yorke conjecture correctly predicts

fsheet stmctﬁfe 'p

the dimension, but the presence of only two
nonnegative exponents preserves qualitative
aspects of the sheetlike character of the
attractor.

 there "ai‘é"’th

ent is very ,b,urred the
attractor is ﬁlled in much more umformly than it
is in fig. 6 :

From the results of table I, and the quahtatnve
features seen in these cross sections, it is clear
that the conjecture of Mori (eq. (10)) is not
correct for these high dimensional attractors.
The conjecture of Kaplan and Yorke (eq. (9))
agrees with our numerical experiments to within
the ability of the experiments to test it. It would,
however, be worthwhile to perform these com-
putations with more data at higher resolution.

For attractors of dimension greater than
three, cross sections tend to all look like scatter
plots, und the value of a cross section in visu-
alizing the structure of an attractor and com-
puting the dimension diminishes. It is for these
higher dimensional attractors that the Kaplan-
Yorke conjecture, together with a computation
of the spectrum of Lyapunov exponents,
becomes indispensable to determine the dimen-
sion of an attractor.

9. Computing Lyapunov exponents for delay
equations

As mentioned in section 7, the state of a
differential-delay equation (13) is determined by
the function x on the interval {t,t —7]. This
function can be approximated by N samples
taken at intervals At=7/(N --1). These N
samples can equivalently be thought of as the N
variables of an N-dimensional discrete map-

ping,

(xh coey XN~1s xN) = (x(t - \N - I)At)- cany X(t
- At), x(1)). (15)
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7. See the caption to fig. 4, and table I. The delay
parameter 1 =30, and De>1.94. Fig. 7a contains 5000

points: i) and (c) were constructed using 100,000 crossings
of the section.

Choosing any integration scheme, for example,
Euler integration,

x(t+ A = x(t) + F(x, x,)At, (16)

where x, = x(t —7), ¢q. (15) is reduced to an
N -dimensional iterated map, x(k + 1) = G(x(k)).
(k labels the iteration.) Each iteration of the
map G corresponds to N timesteps At of the
continuous eguaticus, i.e. each iteration of G
moves the system forward by time -+ At. Using
Euler integration, the map G is defin~d as fol-
lows:

xitk + 1) = xn (k) + F(xn(k), x,(k))At,
xak + 1) = x;(k + 1)+ F(x,(k + 1), x(k))At, (17)

xn(k + 1) = xna(k + 1)+ F(xn-i(k + 1), xn (k)AL

To compute the Lyapunov exponents it is
necessary to follow the evolution of small
volumes. One method by which this can be done
is to compute a reference trajectory, and simul-
taneously compute trajectories that are
separated from the reference trajectory by a
small amount. Alternatively, a set of infinitesi-
mal separation vectors 8x which define an
infinitesimal volume element evolves according
to

N
ox(k +1) = ; —"-%c(—"(%")—)l 8x;(k). (18)

To avoid the numerical problems associated
with computing adjacent trajectories, eq. (18)
can be used to compute the evoiution of
infinitesimal separations directly. When eq. {18)
is applied to eq. (15), and recast as a continuous
equation, it becomes

déx _ aF(x,x,) ., 3F(x,x))
at - ax  oxt ox, 8% (19)
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This equation can be solved using any con-
venient integration scheme. We use a Runge-
Kutta algorithm.

The smail separations &x represent a
difference  between two functions, or,
equivalently, a small separation between two
infinite-dimensional vectors. For c@nvemence
we will refer to them as separatmn funcnous

Note on notation: 8xj(k) denotes the jth
coordinate of the ith separation function on the
kth iteration, of the simulated system. For an
N-dimensional simulation, there are N separa-
tion functions, corresponding to N Lyapunov
exponents, and 1<i, j<N. The tilde 8x'(k)
denotes the collection of all N coordinates of a
discretized separation function, i.e. the N-
dimensional vector approximating a continuous
separation function. A continuous separation
function (in the limit N - ) will be written &x'.

Our numerical procedure to compute
Lyapunov exponents, which is an adaptation of
techniques used in finite dimensions {12, 13],
proceeds as follows: For each exponent A; to be
computed, arbitrarily select an initial separation
function §x'(0). Integrate for a time r, and
renormalize Qg'(l) to have length one. Using a
Gram-Schmidt procedure, orthonormalize the
second function relative to the first, the third
relative to the second, and so cn. Repeat this
procedure for L iterations, and compute

k
s S s L o0

For L large enough, we find numcrically that the
values of A; convcrge. Note that we are arbi-
trarily choosing the Euclidean metric to define
distance in the phase space

Iosl= (3 557) @

If the attractor is a stable fixed point, then A; are
the real parts of the eigenvalues of the linear
part of F, and the separation functions are a real

set of eigenfunctions. If the attractor is chaotic,
however, each separation function varies cha-
otically with time, and the separation functions
are no longer the elgenfunctm'\s of the
linearized problem

~The separatlon functions may be used to
estxmate the initial rate of relaxation of an arbi-
trarily chosen initial condition onto the attrac-
tor. If an initial function x, is expanded in terms
of a set of separation functions,

Xo= 2 kidx', 22)

then kiA; gives a very rough estimate of the
initial rate of relaxation of each component onto
the attractor (for negative A;).

A few examples of separation functions are
shown in fig. 8. Notice that separation functions
of higher index i vary more rapidly than those
of lower index. The results of several tests
indicate that the ith function always has the
order of i inflections.

10. Experimental resxits: exponents, dimension,
and entropy

Figs. 9 and 10 summarize the results of our
numerical computations of the spectrum of
Lyapunov exponents. Fig. 9 shows the spectrum
of the largest Lyapunov exponents, i.e. A; as a
function of i, at each of three fixed parameter
values. Fig. 10 shows each of the four largest
exponents as the parameter 7 is varied from 14
to 40.

We will use the Kaplan-Yorke conjecture, eq.
(9), to construct the following plots of the
Lyapunov dimension (which we assume cor-
responds to the information dimension) as a
function of the parameter 7. The dimension as a
function of 7 is plotted in fig. 11, for » between
15 and 40. For T <16.8, the attractor is a limit
cycle, and the dimension is one. At » = 16.8 the
period doubling sequence accumulates, and the



R4

J.D. Farmer!Chaotic attractors of an infinite-dimensional dynamical system

=1 l Lo
< »®
»x - (]
8k -t

{‘*"Y' T Y Y T T T :I
28 3
= :
= 3
~ 3

®
% 0 ;
o 3
3
S 3
-2k 3
& S WG SN Aa A A 4 A 3

L) 8 t 12 16
e

Fig. 8(a)-(e)

J 04} -

AR LA R T 2 N TR T R B R BT ]

2 Aol

4 8‘,“ 12 -




© LD Farmer/Chaotic attractors of an infinite-dimensional dynamical system 385

o SR

'o' - o T T O WL L T LS T R SRR S . vy ..
3 :
% 0 02} :
.Olp‘ :
-°| —~ 3 {:
* ol :
% °1 :
-02 '
=-0lf :
“03 -02f
W@ AP S S U G WU DN SN SIS Vi S W G SO SO W |

h 100 N [v]

03 B I e B

al

" _MWH
oal] |

~-03

a3()

j 100 200

Fig. 8. Representative portions of time series x(t), and representative portions of a few of the separation fui.ctions 8x' over an
interval of length . For (a)~(e), 7 = 16.8 and N = 336. For (f)~(j) . = 300 and N = 600.



186 J.D. Farmer/Chaotic attractors of an infinite-dimensicnal dynamical system

r'\!’l'“f"f’T""‘ﬁ"“'T TYYYTYYT T YT

00IF

-

o

>
AR AAREAS AL AL A AR AR AIAS Ty

=001

=02

L.LJ_L_;_LA_L—L—LA—L#IA.LAJAIADA.vI:l.l.l.».

fafatalate b b badad cadatadbalatad

0 o, 20
c

o IR BMEL 200 SRAL BME Sadh R Bhde iR AR SRAR R ARGM RAMR BN 4
3

sladadabalda

P IPE PW BN P W W D Y VS W

G AL A S S A S0 an SR AM AN AL SN S

2 rere e =
100 ; 200 300

.o&_
T

L

N
Ty

U

FrYTYYTTY
i

Fie. 9. The spectrum of Lyapunov exponents A, is plotted against i for eq. (14), at threc values of the delay parameter 7. N is the
number of grid points used for the discrete approximation i.e., the dimension of the simulation. (a) r = 1, N = 80. The attractoris a
fixed point: in this case the spectrum of Lyapunov exponents shown here agree with the computed eigenvalues of the linearized
problem. (b) = = 16.8, N = 336. This attractor is very near the accumulation parameter of a period doubling sequence. (c) 7 = 300,
N = 6000, {Sce figs. 1d. 2d. and 3d.) Due to computational constraints, only the first 35 exponents are shown. (d) — A; vs. log(i) for
case (b), iHlustrating the asymptotic behavior of the exponents. (See eq. (22).)

dimensicn abruptly jumps to two, corresponding
to the onset of chaotic behavior. As 7 increases
further, the dimension rises upward from two,
and most parameter values show chaotic
behavior, but at some there are stable limit
cycles, causing the sharp downward jumps in
Dy(7) seen in fig. 11. This is similar to behavior
seen in several finite dimensional examples.
Note also that the shape of the graph of the
iargest Lyapunov exponent as a parameter is
varied. fig. 10a, is qualitatively similar to that

seen for the Rossler dynamical system [44], the
logistic equation [48], and the Lorenz equations
[13].

A quantitative comparison reinforces the
similarity in this parameter range to low dimen-
sional examples: The computations of the
Lyapunov exronents quoted in the text were
made using natural logarithms, and dividing by
time units in terms of the variable t of eq. (14).
As argued by Shaw [14], however, more phy-
sically relevant units are bits per characteristic
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Fig. 11. The dimension as a function of r for = 10 to 40, at
increments of 0.1. The information dimension, assumed to
be given by the Kaplan~Yorke conjecture, eq. (9) is shown
as a solid line. The number of non-negative Lyapunov
exponents is indicated by a dotted line.
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Fig. 12. The dimension as a function of 7 for = = 10 to 400,
in increments of 10. The solid line is the information dimen-
sion (same assumptions as fig 11). The dots indicate the
number of non-negative Lyapunov exponents.
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timescale. Uxing the fundamental period from
the power spectrum of fig. 3a, calling this the
characteristic timescale, and using logarithms in
base two. the maximum value of the largest
Lvapunov exponent (fig. 10a) is approximately
one bit per characteristic timescale. This same
behavicr at the maximum is observed for the
logistic equation [48], the Rossler equations [44],
and the Lorenz equations [13]. This suggesis
that the chaotic attractor at =24, roughly
where A, = 1, makes roughly a two ont; one fold
every characteristic timescale. (Se- Shaw [14].)

For = >24 however, the dimension / xceeds
three for many parameter values, and the quali-
tative behavior is unlike that seen in the lower
dimensional examples mentioned above. Note
that the dimension exceeds three while there are
only two noanegative exponents. The dimension
continues to increase (note that the number of
nonnegative exponents eventually jumps to
three). until the dimension approaches four.

Fig. 12 shows a plot of the dimension as a
functich of 7, using coarser increments, and
following 7 from S0 to 400. Notice that the
dimension increases at a fairly steady, nearly
linear rate: at v = 350, the dimension 1« the order
of 200 This might be interpreted as a steady
transttion to more “developed™ chaos, as is borne
out by the qualitatively more chaotic ap-
pearance of the time series in fig. 2b as com-
pared with fig. 2d.

These results are in agreement with the pre-
dictions of Ruelle and Takens [2]. in that no
quasiperiodic tori of dimension greater than two
are observed, in contrast 1o the behavior sug-
gested by Landau {3). Th. transition to “‘tur-
bulence™ begins with the appearance of a cha-
otic attractor, followed by a sequence of chaotic
attractors of increasingly higher dimension.

One might ask: Just how steady is the tran-
sition to chaos? The results shown here suggest
the following conclusion: As the delay
parameter is varied, a sampling of parameter
values shows the dimension changing sharply by
as much as two or three. For low values of the

delay parameter, where the dimension is the
order of two, these sharp changes cause sharp
changes in the qualitative properties of the
attractor; for example, a chaotic attractor may
become a limit cycle. For large values (e.g. 20)
of the delay parameter, in contrast, the dimen-
sion is the order of twenty. The dimension is
still observed to change by values of two or
three, but the relative change in dimension, and
also in qualitative behavior, is much smaller. As
one might expect, the qualitative nature of high
dimensional chaos appears more stable to
changes of the parameters than the low dimen-
sional chaos.

It is perhaps surprising that a plot of the sum
of nonnegative exponents, fig. 13a, reveals that,
although the dimension of the more delayed
chaotic attractors is considerably larger, the
metric entropy is approximately the same. To
achieve this, all of the exponents, both positive
and negative, get smaller in absolute value as
the delay is increased (see fig. 8). In order for
the metric entropy to remain constant while the
dimension increases linearly, the positive
exponents must decline as 1/r. A plot of the
largest expone.ut from t=50 to 7=400 is
shown in fig. 13b. Although the highly delayed
attractors have a large dimensicn the local rates
of expansion in each direction are quite small.

We can suggest a heuristic reason to connect
the linear increase of the dimension as the delay
parcmeter is varied to the constancy of the
metric entropy. From the definition of embed-
ding dimension, for a delay cquation with an
attractor of embedding dimension M, in prin-
ciple the solution on the attractor on an interval
of length 7 is determined by only M of its
values. If the embedding dimension increases
linearly, so does the number of necessary sam-
ples per interval of length r. Assuming that the
observed linear growth of the information
dimension implies linear growth of the embed-
ding dimension, this implies that the number of
samples needed per unit time interval is a con-
stant. New samples are only required as a loss of
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Fig. 13. (a) The metric (Kolomogorov-Sinai) entropy h, as a
function of 7, from 7 =50 to 400. Although the dimension
increases signific'ntly (see fig. 12), the metric entropy
remains roughly constant. (There are fluctuations, but there
is no systematic increase.) (b) The largest exponent Ay as a
function of 7. In order to be consistent with the constancy of
the metric entropy, and the smooth behavior of the spec-
trum of Lyapunov exponent observed in fig. 9, the positive
exponents must decrease as 1/t for large 7.

information about the state of tue system causes
them to become necessary; this rate of loss of
information is exactly the metric entropy. Thus,
if the metric entropy is constant, one would
expect tha* the number of samples needed per
unit time would also be a constant. Thus, if the
metric entropy is constant, according to this
argument, the dimension should increase
linearly with the delay time.

We doubt that the constancy of the metric
entropy as a parameter is varied is a general
property. The transition to chaos quite likely
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proceeds differently as other parameters are
varied. We suspect that there is a general
theorem for delay differential equations of this
type that, in the limit of large delay time, links
the sampling rate needec to determine the state
on the attractor to the delay time 7 and the
metric entropy. Computational limitations have
prevented our exploration of this question. We
hope to investigate the effect of varying other
parameters in a future study.

11. Asymptotic behavior of the spectrum of
Lyapunov exponents

The Mackey-Glass equation is of the form

% = g(x,)— bx, 23)
where b is a positive constant. By considering
the divergence of an N “imensional proper
simulation of this equation, and making use of
the fact that a certain quantity approaches a
constant as N goes to infinity, the asymptotic
behavior of the Lyapunov exponents A; as i >
can be derived.

The average divergence of a discrete mapping
is the average value of the logarithm of thc
Jacobian determinant. Let Gy be a N element
approximation of eq. (19) in the form of eq. (15),
such as the example given by eq. (17). The
average divergence can then be compute * to be

N
(div Gn) = @ log lg'(x,-)At|>, 4)

wiere At = /(N —1). The average divergence
of Gy is alsc equal to the sum of the Lyapunov
exponents

N
(diV GN) = ; Ai (25)

(This may be used to check the computations of
the Lyapunov exponents A;.)
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Letting

1 /& g
ov = (3 tog 2. (26)

eq. (24) can be rewritten
(divGn)=Npy+Nlogr—Nlog(N-1). 27

If the solution x(f) is continuous, and At is
made very small as N becomes large, then
X..1 = X;. Assuming that log|g'(x(1))| is integrable,
an will approach a constant value p as N > o

+T

p:li[ﬂ% J log|g'{x(s))| ds, (28)
T -x

where (...) is evaluated as a time average.
Using egs. (25) and (27), and approximating py
as p, A; can be approximated for large values of
ias

A =divG.)-divG)=p+logr—logi. (29)

Since p and log 7 are constants, we are left with
a logarithmic dependence of A; on i, which is
confirmed by fig. 9d. The slight deviation from
logarithmic behavior for i the order of N is due
to the fact that the high order separation func-
tions are not resolved accurately because of
their many inflections (see fig. 8).

12. Comparison with a linearized analysis

The spectrum of Lyapunov e
attractor that is a stable fixed point is simply
the real part of the eigenvalues of the linearized
problem. For a chaotic attractor, there is no
such simple correspondence. Nevertheless, one
can pick an unsiable fixed point sitting on or
near the chaotic attractor, compute the real
parts of the eigenvalues of the linearized equa-

tion, and compare these numbers to the spec-
trum of Lyapunov exponents of the attractor.
Since this latter procedure is so much essier to
perform than a computation of the spectrum of
Lyapunov exponents, a comparison is worth-
while to dctermine what qualitative information,
if any, can be gained about the global stability
of a dynamical system from a linearized cal-
culation.

Assuming a solution of the form 8x(t) = Ae",
from eq. (19), A is given by

A=g'(xp)e >~ b, (30)

where x, is the attracting fixed point. For the
parameters a =0.2, b=0.1, and ¢ =10, the
attractor is x, = 1. If eq. (30) is separated into its
real anc imaginary parts, A = r +iw, with a little
rearrangement it becomes

r=—b-—_
tan wr
w(r)=1g'(x,)’ e ™ ~ (r+ b) " (31)

This equation has an infinite number of discrete
solutions. Marginal stability occurs when the
largest solution is r = 0, i.e.

_tan”'(=w(0)/b)
T= w(0) (22)

which can be solved graphically (.ee fig. 14a.)

When t>4.53, eq. (31) no longer correctly
describes the stability of the attractor. It does,
however, reproduce some of the correct quali-
tative features. The number of positive solu-
tions to (31) is not the same as the number of
positive exponents, but nevertheless the in-
crease in the number of positive exponents is
correctly predicted, as is their decrease in mag-
nitude as 7 is increased (see fig. 14b). Thus, a
linear analysis is useful to give a very rough
idea about the qualitative behavior as
parameters are varied.
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Fig. 14. The eigenvalues of eq. (14), linearized about the
point xp = 1, are given by the intersection of the curves with
the diagonal line (Sec eq. (31).) (@) = = 1 and the attractor is
a stable fixed point. In this case the set of linearized eigen-
values and the spectrum of Lyapunov exponents are the
same (b) 1 = 20. The attractor is no longer a fixed point, but
eq. (31) is solved as though it were to get an idea of the
behavior of the exponents. There is some qualitative cor-
respondence, but the quantitative behavior is quite different.
(Compare with fig. 9.) Note the change of scale between (a)
and (b).

13. Conclusions

We have approximated an infinite dimensional
delay equation by a finite-dimensional mapping
to enable computation of the spectrum of
Lyapunov exponents. The low dimensional
chaotic attractors of the delay equation studied

here are qualitatively similar to those found in
systems of ordinary differential equations. At
large values of the delay parameter, however,

we observed ‘chaotic attractors with as many as

ive ,Lyapunov exponents _These ‘high
attractors - have a 1"anrly smooth
exponentlal decay in their power spectmm, and
their quatitative propemes seem to be stable to
changes in the delay parameter.

The transition to “turbulent” behavior begins
with the appearance of a chaotic aftractor (via a
period doubling sequence), followed by chaotic
attractors of increasingly higher dimension.
Since no quasi-periodic tori are seen our results
support the predictions of Ruelle and Takens. In
addition, the transition to high dimecnsional
chaos is fairly smooth, and proceeds with a
nearly linear increase in the number of positive
Lyapunov exponents as the delay parameter is
increased. With a few assumptions, this last
statement may be r2phrased as follows: When
transients have died away, the solution over any
time interval may in principle be determined by
a finite number of samples on that interval.
After the dimension becomes large enough, ti >
number of samples required per fixed time in-
terval for the specification of the systems state
is roughly a constant as the delay time T is
varied. Once the dimension is sufficiently large,
the dimension increases smoothly at a linear
rate as the delay parameter is varied. It is in-
triguing that the metric entropy remains roughly
constant.

The conjecture of Kaplan and Yorke appears
to be correct, at least within our ability to test it
here. Their formula provides a good estimate of
the dimension in terms of the Lyapunov
exponenis. Linear stability analysis about a
point in function space gives qualitative, but not
quantitative agreement with the computed
spectrum of Lyapunov cxponerts. By making
use of a quantity that is asymptotically invariant
for discrete approximations to delay equations
of the same type as the Mackey-Glass equation,
the asymptotic behavior of the spectrum of
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L.vyapunov exponents is correctly predicted to
be logarithmic.
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Appendix A

Computational technique

These computations were done on computers
at UC Santa Cruz (Basic, PDP 11/70), the
National Center for Atmospheric Research
(Fortran, Cray I), and the U. of Southern Cali-
fornia (Fortran, PDP 11/55). Most of them were
done in Jouble precision. Although it is im-
possible to follow the trajectory on a chastic
attractor for very long with any accuracy, it is
possible to compute  accurate  statistical
averages. (See ref. 49.) The most significant
errors in computing the Lyapunov exponents
occur because (1) L in eq. (20) is too small, or
(2} the timesteps At of the simulation are too

coarse. For the majority of the computations,
At=0.05. For a few test cases, At was
decreased to 0.025 and .01, and the resuits
were within a few percent of those made with
At =005, The calculations were run until the
fluctuations in the result were under one
percent, typically 10° timesteps. All integrations
were done with a Runge-Kutta algorithm. The
power spectra shown in fig. 3 were computed
using an FFT algorithm and a cosine bell data
window.
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