-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathE2_evaluator_qna_eval_interview.py
227 lines (204 loc) · 7.36 KB
/
E2_evaluator_qna_eval_interview.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
#
import openai
from mlx_lm import load, stream_generate, generate
from rouge_score import rouge_scorer
# client libraries
from utils.ols_client import olsClient
#
from tqdm import tqdm
import pandas as pd
import os, sys, time, datetime
from dotenv import load_dotenv
if not load_dotenv("config.env"):
print(f"ERROR: Missing config file.")
sys.exit()
DEBUG = True
MLX_MODEL = None # global
####################################################################################
# load globals vars
if not load_dotenv("config.env"):
print(f"ERROR: Missing config file.")
sys.exit()
MODELS = [
'GRANITE7B',
'OLS_GRANITE',
'OPENAI',
'OLS_OAI',
]
####################################################################################
# functions for interviewing the models
####################################################################################
def checkpoint(df, fname=None):
"""
load or create a checkpoint
"""
chkpt_fname = "eval-auto-checkpoint.parquet" if fname is None else fname
if df.shape[0] == 0:
# empty df, try to load previous
try:
dfN = pd.read_parquet(chkpt_fname)
print(
f"Previous checkpoint found ({chkpt_fname}). Resumming execution...")
df = dfN.copy()
except FileNotFoundError:
print(
f"No previous checkpoint ({chkpt_fname}). Initializing a new run....")
df.to_parquet(chkpt_fname, compression='snappy')
else:
df.to_parquet(chkpt_fname, compression='snappy')
return df
def load_mlx(model):
# using global to store instance to speedup query loop
global MLX_MODEL
if MLX_MODEL is None:
repo = "instructlab/"+os.getenv(f"{model}_MODEL", "granite-7b-lab")
mlx_model, mlx_tokenizer = load(repo)
MLX_MODEL=(mlx_model, mlx_tokenizer)
return MLX_MODEL
def message_template(q, model):
# mistral models do not have "system"
if model.lower().startswith('mistral') is True:
messages = [
{
'role': 'user',
'content': q.strip()
}
]
else:
message=[
{
'role': 'system',
# System instructions for the task
'content': f'Answer questions truthfully.\n'
},
{
'role': 'user',
'content': q.strip()
}
]
return message
def query_llm(q, model):
"""
send query to model
"""
ols_path=False
mlx_path=False
if model.startswith("OLS_"):
OLS_API = os.getenv(f"{model}_BASE_URL")
OLS_TOKEN = os.getenv(f"{model}_TOKEN")
OLS_PROVIDER = os.getenv(f"{model}_PROVIDER")
OLS_MODEL = os.getenv(f"{model}_MODEL")
if OLS_API is None:
print(f"ERRROR: Cannot find OLS API definition {model}_BASE_URL")
sys.exit()
llm_client = olsClient(api_url=OLS_API, token=OLS_TOKEN, llm_provider=OLS_PROVIDER, model=OLS_MODEL)
print(f"Using OLS PATH Mode\nUrl={OLS_API}\nProvider={OLS_PROVIDER}")
ols_path=True
else:
llm_client = openai.OpenAI(
base_url=os.getenv(f"{model}_BASE_URL"),
api_key=os.getenv(f"{model}_API_KEY"),
)
model_name = os.getenv(f"{model}_MODEL")
counter=3 # maximum timeout cycles for question
while True:
try:
if ols_path is True:
response = llm_client.query(q.strip())
print(f"DEBUG: {model} response: {response}")
elif model.lower().startswith('granite'):
mlx_model, mlx_tokenizer = load_mlx(model)
response = generate(model=mlx_model, tokenizer=mlx_tokenizer,
prompt=q.strip(), max_tokens=1000)
print(f"DEBUG: MLX response: {response}")
mlx_path=True
else:
response = llm_client.chat.completions.create(
model=model_name,
messages=message_template(q, model),
# response_format={ "type": "json_object" },
temperature=0.3,
top_p=0.1,
timeout=30,
stream=False,
)
print(
f"DEBUG: {model} response: {response.choices[0].message.content}")
if ols_path is True or mlx_path is True:
answer=response
else:
answer=response.choices[0].message.content
if DEBUG is True:
print(f"DEBUG. Answer = {answer}")
break
except openai.APITimeoutError:
counter-=1
if counter <= 0:
print(f"ERROR: Too many timeouts. Ignoring question: {q}")
answer=pd.NA
break
else:
print(f"WARNING: Backend timeout. Retrying up to {counter} times.")
with open("errors_q.txt", 'a') as err_file:
err_file.write(f"[{model}] "+q+"\n")
err_file.close()
time.sleep(3)
del(llm_client)
return answer
def interview_model(df, model, quantity=5, chkpt=True):
"""
process the top {quantity} questions in data frame
"""
# if invalid number of question, use the full set
if quantity <= 0:
quantity = df.shape[0]
top_n = df[['Question']].head(quantity)
if model not in df.columns:
# make sure the column exist for continuation logic
df[model]=pd.NA
chkpt_indx=0
for indx, row in tqdm(top_n.iterrows(), desc=f"Interviewing {model} Q={quantity}"):
# only invoke the llm if there is no answer with this model
try:
if df.isnull().loc[indx, model].sum() > 0:
df.loc[indx, model] = query_llm(row['Question'], model)
chkpt_indx+=1
# if enabled, do checkpoint every 5 new entries
if chkpt and (chkpt_indx % 5) == 0:
print(f" Checkpoint @ {datetime.datetime.now()}")
checkpoint(df)
else:
continue
except Exception as e:
print(
f"ERROR: {e}\n df.loc results: {df.isnull().loc[indx, model]} with count={df.isnull().loc[indx, model].sum()}")
sys.exit()
return df
def interview_all(df, q_num=30):
"""
handle interview for all models
"""
for m in MODELS:
df = interview_model(df, m, q_num)
checkpoint(df)
return df
####################################################################################
# main
####################################################################################
if __name__ == '__main__':
"""
"""
qna_df = pd.DataFrame()
qna_df = checkpoint(qna_df)
if qna_df.shape[0] == 0:
print(f"ERROR: Empty QNA Eval Pool")
sys.exit()
if DEBUG is True:
print(f"Initialized DataFrame shape={qna_df.shape}\nColumns: {list(qna_df.columns)}")
# interview models
qna_df = interview_all(qna_df,1000)
print(f"DataFrame shape={qna_df.shape} Columns: {qna_df.columns}")
checkpoint(qna_df, "interview-checkpoint.parquet")
####################################################################################
# END OF FLE
####################################################################################