-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathMatrixMultiplication.dfy
65 lines (61 loc) · 2.3 KB
/
MatrixMultiplication.dfy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
function RowColumnProduct(m1: array2<int>, m2: array2<int>, row: nat, column: nat): int
reads m1
reads m2
requires m1 != null && m2 != null && m1.Length1 == m2.Length0
requires row < m1.Length0 && column < m2.Length1
{
RowColumnProductFrom(m1, m2, row, column, 0)
}
function RowColumnProductFrom(m1: array2<int>, m2: array2<int>, row: nat, column: nat, k: nat): int
reads m1
reads m2
requires m1 != null && m2 != null && k <= m1.Length1 == m2.Length0
requires row < m1.Length0 && column < m2.Length1
decreases m1.Length1 - k
{
if k == m1.Length1 then
0
else
m1[row,k]*m2[k,column] + RowColumnProductFrom(m1, m2, row, column, k+1)
}
method multiply(m1: array2<int>, m2: array2<int>) returns (m3: array2<int>)
requires m1 != null && m2 != null
requires m1.Length1 == m2.Length0
ensures m3 != null && m3.Length0 == m1.Length0 && m3.Length1 == m2.Length1
ensures forall i, j | 0 <= i < m3.Length0 && 0 <= j < m3.Length1 ::
m3[i, j] == RowColumnProduct(m1, m2, i, j)
{
m3 := new int[m1.Length0, m2.Length1];
var i := 0;
while i < m1.Length0
invariant 0 <= i <= m1.Length0
invariant forall i', j' | 0 <= i' < i && 0 <= j' < m2.Length1 ::
m3[i',j'] == RowColumnProduct(m1, m2, i', j')
{
var j := 0;
while j < m2.Length1
invariant 0 <= j <= m2.Length1
invariant forall i', j' | 0 <= i' < i && 0 <= j' < m2.Length1 ::
m3[i',j'] == RowColumnProduct(m1, m2, i', j')
invariant forall j' | 0 <= j' < j ::
m3[i,j'] == RowColumnProduct(m1, m2, i, j')
{
var k :=0;
m3[i, j] := 0;
while k < m1.Length1
invariant 0 <= k <= m1.Length1
invariant forall i', j' | 0 <= i' < i && 0 <= j' < m2.Length1 ::
m3[i',j'] == RowColumnProduct(m1, m2, i', j')
invariant forall j' | 0 <= j' < j ::
m3[i,j'] == RowColumnProduct(m1, m2, i, j')
invariant RowColumnProduct(m1, m2, i, j) ==
m3[i,j] + RowColumnProductFrom(m1, m2, i, j, k)
{
m3[i,j] := m3[i,j] + m1[i,k] * m2[k,j];
k := k+1;
}
j := j+1;
}
i := i+1;
}
}