-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathGaussianElim.ml
151 lines (127 loc) · 3.94 KB
/
GaussianElim.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
let argmax (f : int -> float) (l : int list) : int =
let rec go (max_i, max) = function
| [] -> max_i
| x :: xs -> go (let fx = f x in if fx > max then (x, fx) else (max_i, max)) xs
in match l with
| [] -> raise Not_found
| x :: xs -> go (x, f x) xs
let absf a = if a < 0.0 then -. a else a
let range lo hi =
let rec go acc x =
if x < lo then acc
else go (x :: acc) (x - 1)
in go [] (hi - 1)
let near_zero x = x = 0.0
let rec transpose = function
| [] -> []
| [] :: xss -> transpose xss
| (x::xs) :: xss ->
(x :: List.map List.hd xss) :: transpose (xs :: List.map List.tl xss)
module Matrix : sig
type t
exception Singular of int * int
val of_list : float list list -> t
val to_list : t -> float list list
val print : t -> unit
val gaussian_elim : t -> unit
val get : t -> int -> int -> float
end
=
struct
type t = { buf: float array array; inner_dim: int }
let of_list l =
let buf = Array.of_list (List.map Array.of_list l) in
{ buf = buf; inner_dim = if Array.length buf > 0 then Array.length buf.(0) else 0 }
let to_list m =
List.map Array.to_list (Array.to_list m.buf)
let print m =
let print_row r =
for i = 0 to m.inner_dim - 1 do
if i > 0 then print_string " " else ();
Printf.printf "%g" r.(i)
done
in
for i = 0 to Array.length m.buf - 1 do
print_row m.buf.(i);
print_newline ()
done
let swap_rows m i j =
let t = m.buf.(i) in
m.buf.(i) <- m.buf.(j);
m.buf.(j) <- t
let add_scaled_row m dst src alpha =
let r_dst = m.buf.(dst) in
let r_src = m.buf.(src) in
for j = 0 to m.inner_dim - 1 do
r_dst.(j) <- r_dst.(j) +. alpha *. r_src.(j)
done
let get m i j = m.buf.(i).(j)
let set m i j x = m.buf.(i).(j) <- x
exception Singular of int * int
(* transcribed from https://en.wikipedia.org/wiki/Gaussian_elimination#Pseudocode *)
let gaussian_elim mat =
let m = Array.length mat.buf in
let n = mat.inner_dim in
for k = 0 to min m n - 1 do
let i_max = argmax (fun i -> absf (get mat i k)) (range k m) in
if near_zero (get mat i_max k)
then raise (Singular (i_max, k))
else swap_rows mat k i_max;
for i = k + 1 to m - 1 do
let f = get mat i k /. get mat k k in
add_scaled_row mat i k (-. f)
done
done
end
type point = float * float * float
type line = point * point
let point_scale alpha (x,y,z) = (alpha *. x, alpha *. y, alpha *. z)
let point_add (x0,y0,z0) (x1,y1,z1) = (x0 +. x1, y0 +. y1, z0 +. z1)
let point_subtract (x0,y0,z0) (x1,y1,z1) = (x0 -. x1, y0 -. y1, z0 -. z1)
type isect_ll_result = None | Over | Cross of point
(* this actually only handles the skew case properly, I think *)
let isect_ll (p0, q0) (p1, q1) =
let v0 = point_subtract q0 p0 in
let v1 = point_subtract q1 p1 in
let p = point_subtract p1 p0 in
let triple_list (x, y, z) = [x; y; z] in
let m = Matrix.of_list (transpose (List.map triple_list [v0; v1; p])) in
try Matrix.gaussian_elim m; None
with Matrix.Singular (i, j) as e ->
(* we expect the augmented exception since the system is overdetermined *)
if i != 2 || j != 2
then raise e
else
(* backsolve *)
let t1 = Matrix.get m 1 2 /. Matrix.get m 1 1 in
(* we could also express the intersection point in terms of the first line,
but we don't care since we only need one expression for it. *)
(* let t0 = (Matrix.get m 0 2 -. Matrix.get m 0 1 *. t1) /. Matrix.get m 0 0 in *)
Cross (point_add p1 (point_scale t1 v1))
let tests =
[ ( ( (0.0, 0.0, 0.0)
, (1.0, 0.0, 1.0)
)
, ( (0.707, 0.0, 0.707)
, (1.414, 0.0, 0.0)
)
)
; ( ( (4.0, 7.0, 9.0)
, (1.0, 1.0, 1.0)
)
, ( (0.5, 0.7, 1.0)
, (1.0, 0.2, 9.0)
)
)
; ( ( (0.0, 0.0, 0.0)
, (0.0, 0.0, 1.0)
)
, ( (0.0, 0.0, 0.0)
, (1.0, 0.0, 1.0)
)
)
]
let run_tests () =
List.map (fun (l0, l1) -> isect_ll l0 l1) tests
(* isect_ll l0 l1;;*)
(* ^ correctly returns (0.707, 0.0, 0.707) *)