-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathrun_multiprocess.py
172 lines (155 loc) · 6.22 KB
/
run_multiprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import argparse
import logging
import multiprocessing as mp
import os
import pytz
import shutil
from datetime import datetime
from lego_prover.env.chromas import ChromaBridge
from lego_prover.evolver import Evolver
from lego_prover.prover import Prover
import lego_prover.utils as U
from openai_key import *
parser = argparse.ArgumentParser(description='LEGO-Prover')
parser.add_argument('--resume', action='store_true',
help='whether to resume from the checkpoint')
parser.add_argument('--data_split', type=str, choices=['valid', 'test'],
default='valid', help='data split to use in the miniF2F dataset')
parser.add_argument('--ckpt_dir', type=str, default='checkpoints/lego_prover_valid_2023_10_27',
help='path to the checkpoint directory')
parser.add_argument('--isabelle_path', type=str, default='/data2/wanghaiming/Isabelle2022/',
help='path to the Isabelle2022 directory')
parser.add_argument('--model_name', type=str, choices=["gpt-3.5-turbo", "gpt-4"],
default='gpt-3.5-turbo', help='OpenAI model name')
parser.add_argument('--temperature', type=float, default=0.7,
help='temperature for sampling the LLM')
parser.add_argument('--num_prover', type=int, default=3,
help='number of prover processes')
parser.add_argument('--num_evolver', type=int, default=8,
help='number of evolver processes')
parser.add_argument('--num_attempts', type=int, default=100,
help='number of proving attempts for each problem in the dataset')
args = parser.parse_args()
resume = args.resume
data_split = args.data_split
ckpt_dir = args.ckpt_dir
isabelle_path = args.isabelle_path
model_name = args.model_name
temperature = args.temperature
number_of_prover_processes = args.num_prover
number_of_evolver_processes = args.num_evolver
number_of_prover_attempts = args.num_attempts
if os.path.exists(ckpt_dir) and not resume:
text = input(f"the checkpoint directory {ckpt_dir} is already exist, and" + \
f"you are not resuming from it, do you want to delete it? (y/n)")
if "y" in text.lower():
shutil.rmtree(ckpt_dir, ignore_errors=True)
resume = False
else:
resume = True
# load miniF2F tasks and resume from the checkpoint
miniF2F_tasks = mp.Queue()
problem_names = []
if resume:
if os.path.exists(f"{ckpt_dir}/curriculum/completed_tasks.json"):
completed_tasks = U.load_json(
f"{ckpt_dir}/curriculum/completed_tasks.json")
if os.path.exists(f"{ckpt_dir}/curriculum/failed_tasks.json"):
failed_tasks = U.load_json(f"{ckpt_dir}/curriculum/failed_tasks.json")
print("Current progress: ", len(completed_tasks) + len(set(failed_tasks)))
else:
completed_tasks = []
failed_tasks = []
for name in os.listdir(f"data/full_data/{data_split}"):
path = os.path.join(f"data/full_data/{data_split}", name)
context = U.load_json(path)
problem_names.append((path, len(context["informal_proof"])))
problem_names = sorted(problem_names, key=lambda x: x[1])
problem_names = [pn[0] for pn in problem_names]
problem_names = problem_names * number_of_prover_attempts # 10 * 20 = 200 sketch
for pn in problem_names:
if pn in completed_tasks:
continue
if pn in failed_tasks:
failed_tasks.remove(pn)
continue
miniF2F_tasks.put(pn)
print(f"Sketch to finish: {miniF2F_tasks.qsize()}")
# setup multiprocessing logger
start_time = datetime.now(pytz.timezone(
'Asia/Shanghai')).strftime("%Y%m%d_%H%M%S")
os.makedirs(f'logs/prover/{start_time}_logs', exist_ok=True)
for rank in range(number_of_prover_processes):
logger = logging.getLogger(f'prover-{rank}')
handler = logging.FileHandler(
f"logs/prover/{start_time}_logs/rank_{rank}.log")
formatter = logging.Formatter(
"%(asctime)s - %(name)s - %(levelname)s - %(message)s"
)
handler.setFormatter(formatter)
logger.addHandler(handler)
logger.setLevel(logging.INFO)
os.makedirs(f'logs/evolver/{start_time}_logs', exist_ok=True)
for evolver_rank in range(number_of_evolver_processes):
evolver_rank += number_of_prover_processes
logger = logging.getLogger(f'evolver-{evolver_rank}')
handler = logging.FileHandler(
f"logs/evolver/{start_time}_logs/rank_{evolver_rank}.log")
formatter = logging.Formatter(
"%(asctime)s - %(name)s - %(levelname)s - %(message)s"
)
handler.setFormatter(formatter)
logger.addHandler(handler)
logger.setLevel(logging.INFO)
# define the function to run the prover and evolver
def run_prover(rank, tasks, skill_manager_lock, curriculum_agent_lock, chroma_bridge):
server_port = 8051 + rank
prover = Prover(
rank=rank,
isabelle_path=isabelle_path,
server_port=server_port,
model_name=model_name,
skill_manager_lock=skill_manager_lock,
action_agent_task_max_retries=1,
curriculum_task_type="queue_curriculum",
curriculum_agent_lock=curriculum_agent_lock,
resume=resume,
temperature=temperature,
miniF2F_tasks=tasks,
ckpt_dir=ckpt_dir,
chroma_bridge=chroma_bridge,
)
prover.learn()
def run_evolver(rank, skill_manager_lock, chroma_bridge):
server_port = 8011 + rank
evolver = Evolver(
rank=rank,
isabelle_path=isabelle_path,
ckpt_dir=ckpt_dir,
server_port=server_port,
data_split=data_split,
skill_manager_lock=skill_manager_lock,
model_name=model_name,
temperature=temperature,
chroma_bridge=chroma_bridge
)
evolver.evolve()
processes = []
skill_manager_lock = mp.Lock()
curriculum_agent_lock = mp.Lock()
chroma_bridge = ChromaBridge(ckpt_path=ckpt_dir, resume=resume)
# creating processes
for rank in range(number_of_prover_processes):
p = mp.Process(target=run_prover, args=(rank, miniF2F_tasks,
skill_manager_lock, curriculum_agent_lock, chroma_bridge))
processes.append(p)
p.start()
for rank in range(number_of_evolver_processes):
rank += number_of_prover_processes
p = mp.Process(target=run_evolver, args=(
rank, skill_manager_lock, chroma_bridge))
processes.append(p)
p.start()
# completing process
for p in processes:
p.join()