-
Notifications
You must be signed in to change notification settings - Fork 0
/
MyTesting.py
44 lines (39 loc) · 1.69 KB
/
MyTesting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import torch
import torch.nn.functional as F
import numpy as np
import os, argparse
from scipy import misc
import cv2
from lib.pvt import IdeNet
from utils.dataloader import My_test_dataset
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
parser = argparse.ArgumentParser()
parser.add_argument('--testsize', type=int, default=384, help='testing size default 352')
parser.add_argument('--pth_path', type=str, default='/dataset2/gjw/IdeNet/checkpoints/IdeNet/Net_epoch_best.pth')
opt = parser.parse_args()
for _data_name in ['CAMO','CHAMELEON','NC4K', 'COD10K']:
data_path = '/dataset2/gjw/Data/TestDataset/{}/'.format(_data_name)
save_path = './result/{}/{}/'.format(opt.pth_path.split('/')[-2], _data_name)
model = IdeNet(train_mode=False)
model.load_state_dict(torch.load(opt.pth_path, map_location='cuda:0'))
model.cuda()
model.eval()
os.makedirs(save_path, exist_ok=True)
image_root = '{}/Image/'.format(data_path)
gt_root = '{}/GT/'.format(data_path)
print('root',image_root,gt_root)
test_loader = My_test_dataset(image_root, gt_root, opt.testsize)
print('****',test_loader.size)
for i in range(test_loader.size):
image, gt, name = test_loader.load_data()
print('***name',name)
gt = np.asarray(gt, np.float32)
gt /= (gt.max() + 1e-8)
image = image.cuda()
P = model(image)
P[-1] = (torch.tanh(P[-1]) + 1.0) / 2.0
res = F.upsample(P[-1], size=gt.shape, mode='bilinear', align_corners=False)
res = res.sigmoid().data.cpu().numpy().squeeze()
res = (res - res.min()) / (res.max() - res.min() + 1e-8)
print('> {} - {}'.format(_data_name, name))
cv2.imwrite(save_path+name,res*255)