-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathrounD_preprocess.py
448 lines (371 loc) · 16.2 KB
/
rounD_preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
import pandas as pd
import numpy as np
from dataclasses import dataclass
from tqdm import tqdm
import pickle
import torch
import os
import shutil
SEARCH_PATH = '../data_sets/rounD'
INPUT_LENGTH = 3
PRED_HORIZON = 5
N_IN_FEATURES = 9
N_OUT_FEATURES = 7
DOWN_SAMPLE = 5
fz = 25
@dataclass
class MetaInfo:
rec_id: str
frame: int
initial_pos: list
vehicle_ids: list
vehicle_types: list
euclidian_dist: list
maneuver_id: list
width: list
length: list
def create_directories(overwrite=True):
data_dir = "rounD-gnn"
root = f'data/{data_dir}'
top_dirs = ['training', 'validation', 'testing']
sub_dirs = ['observation', 'target', 'meta']
for d in top_dirs:
top_dir = f'{root}/{d}'
if os.path.exists(top_dir):
response = input(f'Directory exists: {top_dir} - Overwrite? yes|no \n').lower()
if response in ('yes', 'y'):
shutil.rmtree(top_dir)
else:
raise FileExistsError
for s in sub_dirs:
sub_dir = f'{top_dir}/{s}'
os.makedirs(sub_dir)
return data_dir
def euclidian(x1, y1, x2, y2):
from math import sqrt
r = sqrt((x1 - x2) ** 2 + (y1 - y2) ** 2)
return r
def maneuver_label(heading_start, heading_end):
turn_alts = np.array([-np.pi / 2, 0, np.pi / 2, np.pi])
tmp = heading_end - heading_start
head_diff = turn_alts - np.radians(tmp)
wrap_to_pi = np.arctan2(np.sin(head_diff), np.cos(head_diff))
return np.argmin(np.abs(wrap_to_pi)), tmp
def find_neighboring_nodes(df, frame, id0, x0, y0, upper_limit=10):
def filter_ids(dist, radius=50):
return True if dist[0] < radius else False
df1 = df[(df.frame == frame) & (df.trackId != id0)]
if df1.empty:
return []
dist = list(df1.apply(lambda x: (euclidian(x0, y0, x.xCenter, x.yCenter), x.trackId), axis=1))
dist = list(filter(filter_ids, dist))
dist_sorted = sorted(dist)
del dist_sorted[upper_limit:]
return dist_sorted
def get_meta_property(tracks_meta, vehicle_ids, prop='class'):
prp = [tracks_meta[tracks_meta.trackId == v_id][prop].values[0] for v_id in vehicle_ids]
return prp
def wrap_to_pi(angle, deg2rad=True):
if deg2rad:
angle = np.deg2rad(angle)
return np.arctan2(np.sin(angle), np.cos(angle))
def get_input_features(df, frame_start, frame_end, trackId=-1):
if trackId != -1:
dfx = df[(df.frame >= frame_start) & (df.frame <= frame_end) & (df.trackId == trackId)]
else:
dfx = df[(df.frame >= frame_start) & (df.frame <= frame_end)]
x = dfx.xCenter.values
y = dfx.yCenter.values
psi = wrap_to_pi(dfx.heading.values)
vx = dfx.xVelocity.values
vy = dfx.yVelocity.values
rho = dfx.rho.values
theta = dfx.theta.values
ax = dfx.xAcceleration.values
ay = dfx.yAcceleration.values
return x, y, psi, vx, vy, ax, ay, rho, theta
def get_adjusted_features(df, frame_start, frame_end, n_features, x0=0., y0=0., trackId=-1):
return_array = np.empty((frame_end - frame_start + 1, n_features))
return_array[:] = np.NaN
if trackId != -1:
dfx = df[(df.frame >= frame_start) & (df.frame <= frame_end) & (df.trackId == trackId)]
else:
dfx = df[(df.frame >= frame_start) & (df.frame <= frame_end)]
try:
first_frame = dfx.frame.values[0]
except IndexError:
return return_array
frame_offset = first_frame - frame_start
x = dfx.xCenter.values - x0
y = dfx.yCenter.values - y0
psi = wrap_to_pi(dfx.heading.values)
vx = dfx.xVelocity.values
vy = dfx.yVelocity.values
rho = dfx.rho.values
theta = dfx.theta.values
ax = dfx.xAcceleration.values
ay = dfx.yAcceleration.values
if n_features == N_IN_FEATURES:
feat_stack = np.stack((x, y, psi, vx, vy, ax, ay, rho, theta), axis=1)
else:
feat_stack = np.stack((x, y, psi, vx, vy, ax, ay), axis=1)
return_array[frame_offset:frame_offset + feat_stack.shape[0], :] = feat_stack
return return_array
def get_storage_dict():
dd = {}
for t in ['training', 'validation', 'testing']:
dd[t] = {'id': 0, 'ids': []}
return dd
def remove_selected_vehicles(tracks, v_ids, rm=False):
for v_id in v_ids:
if rm:
tracks = tracks.drop(tracks[(tracks.trackId == v_id)].index)
else:
tracks = tracks.drop(tracks[(tracks.trackId == v_id) &
(tracks.xAcceleration == 0) &
(tracks.yAcceleration == 0)].index)
return tracks
def remove_parked_vehicles(tracks, tracks_meta):
parked_vehicles = tracks_meta[(tracks_meta.initialFrame == 0) &
(tracks_meta.finalFrame == tracks_meta.finalFrame.max())]
a = parked_vehicles.trackId.values
tracks = tracks[~tracks['trackId'].isin(a)]
tracks_meta = tracks_meta[~tracks_meta['trackId'].isin(a)]
return tracks, tracks_meta
def add_maneuver_label(tracks, tracks_meta, rec_id):
tracks_meta['maneuver'] = np.empty(len(tracks_meta))
t_ids = tracks_meta.trackId.values
t_class = tracks_meta['class'].values
maneuver_count = dict()
for k in range(5):
maneuver_count[k] = 0
for i in range(len(t_ids)):
t_id = t_ids[i]
dfx = tracks[tracks.trackId == t_id]
if t_class[i] == 'pedestrian':
m_label = 4
else:
h = dfx.heading.values
m_label, a1 = maneuver_label(h[0], h[-1])
if m_label == 3:
yc = dfx.yCenter.values
r = euclidian(0, yc[0], 0, yc[-1])
if rec_id == '09':
if t_id == 667:
m_label = 1
elif r > 15:
m_label = 2
maneuver_count[m_label] += 1
tracks_meta.loc[tracks_meta['trackId'] == t_id, 'maneuver'] = m_label
return tracks_meta
def add_polar_coordinates(x0, y0, tracks):
def polar_to_center(x1, y1, x2, y2):
x2 = np.ones_like(x1) * x2
y2 = np.ones_like(y1) * y2
r = np.sqrt((x1 - x2) ** 2 + (y1 - y2) ** 2)
a = np.arctan2(y1 - y2, x1 - x2)
return r, a
tracks['rho'] = np.empty(len(tracks))
tracks['theta'] = np.empty(len(tracks))
t_ids = pd.unique(tracks.trackId)
for t_id in t_ids:
y = tracks.loc[tracks.trackId == t_id, 'yCenter'].to_numpy()
x = tracks.loc[tracks.trackId == t_id, 'xCenter'].to_numpy()
rho, th = polar_to_center(x, y, x0, y0)
tracks.loc[tracks['trackId'] == t_id, ['rho']] = rho
tracks.loc[tracks['trackId'] == t_id, ['theta']] = th
return tracks
def build_seq_edge_idx(x):
def build_edge_idx(x):
num_nodes = x.size(0)
nan_indices = torch.isnan(x[:, 0]).nonzero()
max_connective_nodes = (num_nodes - len(nan_indices)) ** 2
real_n_nodes = num_nodes - len(nan_indices)
E = torch.zeros((2, max_connective_nodes), dtype=torch.long)
node_list = []
for n in range(num_nodes):
if n not in nan_indices:
node_list.append(n)
for i, node in enumerate(node_list):
for neighbor in range(len(node_list)):
E[0, i * real_n_nodes + neighbor] = node
E[1, i:-1:real_n_nodes] = node
E[1, -1] = node
return E
E = []
seq_len = x.size(1)
for i in range(seq_len):
E.append(build_edge_idx(x[:, i]))
return E
def build_full_seq_edge_idx(x):
def build_full_edge_idx(num_nodes):
E = torch.zeros((2, num_nodes * (num_nodes)), dtype=torch.long)
for node in range(num_nodes):
for neighbor in range(num_nodes):
E[0, node * num_nodes + neighbor] = node
E[1, node:-1:num_nodes] = node
E[1, -1] = num_nodes - 1
return E
num_nodes = x.size(0)
seq_len = x.size(1)
E = []
edge_index = build_full_edge_idx(num_nodes)
for _ in range(seq_len):
E.append(edge_index)
return E
def euclidian_distance(x1, x2):
# x1.shape (2, )
# x2.shape (2, )
return np.sqrt(np.sum((x1 - x2) ** 2))
def euclidian_instance(inp):
# inp.shape (n_vehicles, n_features)
n_vehicles = inp.shape[0]
output = []
for v_id in range(n_vehicles):
for v_neighbor in range(n_vehicles):
d = euclidian_distance(inp[v_id, :2], inp[v_neighbor, :2])
if not np.isnan(d):
output.append(d)
return torch.tensor(output).unsqueeze(1).float()
def euclidian_sequence(inp):
# inp.shape (n_vehicles, seq_len, n_features)
seq_len = inp.shape[1]
output = []
for i in range(seq_len):
output.append(euclidian_instance(inp[:, i]))
return output
def get_frame_split(n_frames):
all_frames = list(range(1, n_frames + 1))
var = np.random.uniform(0, 3)
if var < 1:
# first variant 80-10-10
tr = [1, all_frames[int(0.8 * n_frames) - 1]]
val = [all_frames[int(0.8 * n_frames)], all_frames[int(0.9 * n_frames) - 1]]
test = [all_frames[int(0.9 * n_frames)], all_frames[-1]]
elif 1 <= var < 2:
# scnd variant 10-80-10
tr = [all_frames[int(0.1 * n_frames)], all_frames[int(0.9 * n_frames) - 1]]
val = [1, all_frames[int(0.1 * n_frames) - 1]]
test = [all_frames[int(0.9 * n_frames)], all_frames[-1]]
else:
# third variant 10-10-80
tr = [all_frames[int(0.2 * n_frames)], all_frames[-1]]
val = [1, all_frames[int(0.1 * n_frames) - 1]]
test = [all_frames[int(0.1 * n_frames)], all_frames[int(0.2 * n_frames) - 1]]
combo = np.random.uniform()
if combo < 0.5:
return tr, val, test
else:
return tr, test, val
def which_set(v_frames, tr, val, test):
assert v_frames[-1] > v_frames[0]
for set_frames, curr in zip((tr, val, test), ('training', 'validation', 'testing')):
if v_frames[0] >= set_frames[0] and v_frames[-1] <= set_frames[-1]:
return curr
return None
if __name__ == "__main__":
root = create_directories()
# rec_ids = ['0' + str(f) if len(str(f)) < 2 else str(f) for f in range(0, 23 + 1)]
rec_ids = ['0' + str(f) if len(str(f)) < 2 else str(f) for f in range(9, 23 + 1)]
s_dict = get_storage_dict()
np.random.seed(1234)
for r_id in rec_ids:
# only use some data
if r_id == '00':
p0 = (115.51669730710512, -70.6429033531912)
elif r_id == '01':
p0 = (137.8338032894461, -61.07768929146573)
elif r_id in ('02', '03', '04', '05', '06', '07', '08'):
p0 = (81.1796093796538, -47.04150080448024)
else:
p0 = (80.97640635242064, -46.93989929086365)
print(f'Starting with recording {r_id}')
meta = pd.read_csv(f'{SEARCH_PATH}/data/{r_id}_recordingMeta.csv')
t_meta = pd.read_csv(f'{SEARCH_PATH}/data/{r_id}_tracksMeta.csv')
tracks = pd.read_csv(f'{SEARCH_PATH}/data/{r_id}_tracks.csv', engine='pyarrow')
# Perform some initial cleanup
tracks, t_meta = remove_parked_vehicles(tracks, t_meta)
if r_id == '03':
tracks = remove_selected_vehicles(tracks, (15, 17))
elif r_id == '14':
# tracks = remove_selected_vehicles(tracks, (13, 14, 16), rm=True)
continue
t_meta = add_maneuver_label(tracks, t_meta, r_id)
tracks = add_polar_coordinates(p0[0], p0[1], tracks)
# Determine tr, val, test split (by frames)
train_frames, val_frames, test_frames = get_frame_split(t_meta.finalFrame.array[-1])
# Get data and store
car_ids = list(t_meta[t_meta['class'].isin(['car', 'truck', 'van'])].trackId)
ii = tqdm(range(0, len(car_ids)))
for i in ii:
id0 = car_ids[i]
df = tracks[tracks.trackId == id0]
frames = list(df.frame)
curr_set = which_set(frames, train_frames, val_frames, test_frames)
if curr_set is None:
# If a vehicle is within frames which are overlapping the sets
continue
if len(frames) < fz * (INPUT_LENGTH + PRED_HORIZON) + 1:
continue
for f in frames[0:-1:fz * 2]:
fp = f + fz * INPUT_LENGTH
fT = fp + fz * PRED_HORIZON
if fT not in frames:
break
x, y, psi, vx, vy, ax, ay, rho, theta = get_input_features(df, f, fp - 1)
neighbors = find_neighboring_nodes(tracks, fp - 1, id0, x[-1], y[-1])
n_SVs = len(neighbors)
sv_ids = [int(neighbors[n][1]) for n in range(n_SVs)]
euc_dist = [int(neighbors[n][0]) for n in range(n_SVs)]
v_ids = [id0, *sv_ids]
v_class = get_meta_property(t_meta, v_ids, prop='class')
v_man = get_meta_property(t_meta, v_ids, prop='maneuver')
v_width = get_meta_property(t_meta, v_ids, prop='width')
v_height = get_meta_property(t_meta, v_ids, prop='length')
x0 = p0[0] # x[0]
y0 = p0[1] # y[0]
x -= x0
y -= y0
meta_info = MetaInfo(r_id, fp - 1, [x0, y0], v_ids, v_class, [0, *euc_dist], v_man, v_width, v_height)
input_array = np.empty((n_SVs + 1, fz * INPUT_LENGTH, N_IN_FEATURES))
target_array = np.empty((n_SVs + 1, fz * PRED_HORIZON, N_OUT_FEATURES))
input_array[0, :, :] = np.stack((x, y, psi, vx, vy, ax, ay, rho, theta), axis=1)
target_array[0, :, :] = get_adjusted_features(df, fp, fT - 1, N_OUT_FEATURES, x0, y0)
for j, n in enumerate(range(0, n_SVs)):
(dist, sv_id) = neighbors[n]
input_array[j + 1, :, :] = get_adjusted_features(tracks, f, fp - 1, N_IN_FEATURES, x0, y0, sv_id)
target_array[j + 1, :, :] = get_adjusted_features(tracks, fp, fT - 1, N_OUT_FEATURES, x0, y0, sv_id)
input_array = input_array[:, -1:0:-DOWN_SAMPLE][:, ::-1, :]
target_array = target_array[:, -1:0:-DOWN_SAMPLE][:, ::-1, :]
# Build edge indices
input_edge_index = build_seq_edge_idx(torch.tensor(input_array))
target_edge_index = build_seq_edge_idx(torch.tensor(target_array))
inference_target_edge_index = build_full_seq_edge_idx(torch.tensor(target_array))
# Build edge features
input_edge_feat = euclidian_sequence(input_array)
target_edge_feat = euclidian_sequence(target_array)
# Convert to torch tensors
input_array = torch.from_numpy(input_array).float()
target_array = torch.from_numpy(target_array).float()
# Compute masks
input_nan_mask = torch.isnan(input_array)
target_real_mask = ~torch.isnan(target_array)
if np.isnan(input_array[:, -1, :]).any():
raise ValueError
current_id = s_dict[curr_set]['id']
torch.save(input_array, f'data/{root}/{curr_set}/observation/dat{current_id}.pt')
torch.save(input_nan_mask, f'data/{root}/{curr_set}/observation/nan_mask{current_id}.pt')
torch.save(input_edge_index, f'data/{root}/{curr_set}/observation/edge_idx{current_id}.pt')
torch.save(input_edge_feat, f'data/{root}/{curr_set}/observation/edge_feat{current_id}.pt')
torch.save(target_array, f'data/{root}/{curr_set}/target/dat{current_id}.pt')
torch.save(target_real_mask, f'data/{root}/{curr_set}/target/real_mask{current_id}.pt')
torch.save(target_edge_index, f'data/{root}/{curr_set}/target/edge_idx{current_id}.pt')
torch.save(target_edge_feat, f'data/{root}/{curr_set}/target/edge_feat{current_id}.pt')
torch.save(inference_target_edge_index,
f'data/{root}/{curr_set}/target/full_edge_idx{current_id}.pt')
torch.save(meta_info, f'data/{root}/{curr_set}/meta/dat{current_id}.pt')
s_dict[curr_set]['ids'].append(current_id)
s_dict[curr_set]['id'] += 1
torch.save(s_dict['training']['ids'], f'data/{root}/training/ids.pt')
torch.save(s_dict['validation']['ids'], f'data/{root}/validation/ids.pt')
torch.save(s_dict['testing']['ids'], f'data/{root}/testing/ids.pt')