-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathcovid_optimize.py
executable file
·374 lines (318 loc) · 13.1 KB
/
covid_optimize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
import torch
import torch.nn as nn
import torch.optim as optim
import torch.optim.lr_scheduler as lr_scheduler
from torch.utils.data import DataLoader
import json
import csv
import math, random, sys
import numpy as np
import argparse
import os
from copy import deepcopy
from tqdm import tqdm, trange
from structgen import *
from neut_model import *
class CovidNeutralizationModel():
def __init__(self):
MODEL_PATH = "ckpts/covid/neut_model.ckpt"
MODEL_ARGS = {
"hidden_dim": 256,
"n_layers": 2,
"use_srupp": False
}
MODEL_ARGS.update(MultiABOnlyCoronavirusModel.add_extra_args())
self.model = MultiABOnlyCoronavirusModel.load_from_checkpoint(
MODEL_PATH,
**MODEL_ARGS, # type: ignore
)
self.model.cuda()
self.model.eval()
def predict(self, vh, vl):
ab_sequence = vh
ab_sequence = torch.tensor([AA_VOCAB[aa] for aa in ab_sequence]).long()
ab_sequence = ab_sequence.unsqueeze(0).cuda()
neut_logits = self.model(ab_sequence)
prob = torch.sigmoid(neut_logits)
return prob[0, 1].item()
def extract_fn(query):
all_viruses = [
x.replace("(weak)", "").strip()
for x in query.replace(" and ", ";").replace(",", ";").split(";")
]
filtered = [virus for virus in all_viruses if virus in RELEVANT_VIRUSES]
return set(filtered)
def load_data():
# Load antibody data
with open("data/covabdab/CoV-AbDab_050821.csv", "r") as f:
full_data = list(csv.DictReader(f))
# First filter to relevant AB's
full_data = [
item
for item in full_data
if any(
virus in item[key]
for virus in RELEVANT_VIRUSES
for key in RELEVANT_KEYS
)
and item["Ab or Nb"] == "Ab" # remove nanobodies
and len(item["VH or VHH"].strip()) > 2 # ensure sequence available
and len(item["VL"].strip()) > 2 # ensure sequence available
and "S" in item["Protein + Epitope"] # ensure binds to S protein
and TYPE_MAP[item["Protein + Epitope"]] == "rbd"
]
sarscov2_ab_data = []
for item in full_data:
bindings = set()
if item["Binds to"]:
bindings = extract_fn(item["Binds to"])
non_bindings = set()
if item["Doesn't Bind to"]:
non_bindings = extract_fn(item["Doesn't Bind to"])
neutralizing = set()
if item["Neutralising Vs"]:
neutralizing = extract_fn(item["Neutralising Vs"])
non_neutralizing = set()
if item["Not Neutralising Vs"]:
non_neutralizing = extract_fn(item["Not Neutralising Vs"])
all_viruses = bindings | non_bindings | neutralizing | non_neutralizing
full_label = [0, 0]
full_mask = [0, 0]
for virus in all_viruses:
label = [0, 0]
mask = [0, 0]
if virus in bindings and neutralizing:
label = [1, 1]
mask = [1, 1]
elif virus in bindings and non_neutralizing:
label = [0, 1]
mask = [1, 1]
elif virus in non_bindings:
label = [0, 0]
mask = [1, 1]
elif virus in neutralizing:
label = [1, 1]
mask = [1, 1]
elif virus in bindings:
label = [0, 1]
mask = [0, 1]
elif virus in non_neutralizing:
label = [0, 1]
mask = [1, 0]
idx = virus == "SARS-CoV2"
full_label[idx] = label[0]
full_mask[idx] = mask[0]
# Save sars-cov2 data for later
sarscov2_ab_data.append({
'name': item["\ufeffName"],
'label': full_label[1],
'mask': full_mask[1],
'epitope': TYPE_MAP[item["Protein + Epitope"]],
'ab': item["VH or VHH"].replace(" ", "") + "-" + item["VL"].replace(" ", ""),
'hcdr3': item["CDRH3"],
'lcdr3': item["CDRL3"],
})
return sarscov2_ab_data
def make_entry(d, args):
entry = {k: d[k] for k in ['name', 'hcdr3', 'lcdr3']}
entry['VH'], entry['VL'] = d['ab'].split('-')
assert entry['VH'].count(entry['hcdr3']) == 1
entry['context'] = entry['VH'].replace(entry['hcdr3'], '#' * len(entry['hcdr3']))
fw1, fw2 = entry['context'].replace('#', ' ').split()
entry['cdr'] = '0' * len(fw1) + '3' * len(entry['hcdr3']) + '0' * len(fw2)
entry['coords'] = {
"N": np.zeros((len(entry['VH']), 3)),
"CA":np.zeros((len(entry['VH']), 3)),
"C": np.zeros((len(entry['VH']), 3)),
"O": np.zeros((len(entry['VH']), 3)),
}
entry['label'] = d['label']
entry['seq'] = entry['VH'] if args.architecture == 'hierarchical' else entry['hcdr3']
return entry
# Decode new sequences
def decode(model, ab, args):
batch = [ab] * args.batch_size
model.eval()
with torch.no_grad():
if args.architecture == 'hierarchical':
hX, hS, hL, hmask = completize(batch)
new_seqs = model.generate(hS, hL, hmask)
else:
(hX, hS, hL, hmask), context = featurize(batch, context=True)
new_seqs = model.generate(hS.size(0), hS.size(1), context=context)
return new_seqs
def evaluate(model, predictor, evaluator, data, args):
succ, tot = 0, 0
model.eval()
with torch.no_grad():
for ab in tqdm(data):
new_seqs = decode(model, ab, args)
tot = tot + len(new_seqs)
prior_ppl = is_natural_seq(evaluator, ab, new_seqs)
for new_cdr, ppl in zip(new_seqs, prior_ppl):
if is_valid_seq(new_cdr) and ppl <= args.max_prior_ppl:
VH = ab['VH'].replace(ab['hcdr3'], new_cdr)
prob = predictor.predict(VH, ab['VL'])
succ = succ + prob
else:
succ = succ + ab['score'] # not valid, improvement=0
return succ / tot
# Glycoslation is bad
def is_valid_seq(cdr):
if '#' in cdr: return False
charge = [CHARGE[x] for x in cdr]
if sum(charge) >= 3 or sum(charge) <= -3:
return False
for a in 'ABCDEFGHIJKLMNOPQRSTUVWXYZ':
if ('N' + a + 'T') in cdr:
return False
if ('N' + a + 'S') in cdr:
return False
if (a * 4) in cdr:
return False
return True
def is_natural_seq(evaluator, ab, cand_cdrs):
with torch.no_grad():
batch = []
for cdr in cand_cdrs:
ab = deepcopy(ab)
ab['seq'] = ab['VH'].replace(ab['hcdr3'], cdr)
batch.append(ab)
hX, hS, hL, hmask = completize(batch)
cand_ppl1 = evaluator[0].log_prob(hS, hL, hmask).ppl.exp()
batch = []
for cdr in cand_cdrs:
ab = deepcopy(ab)
ab['seq'] = cdr
batch.append(ab)
(hX, hS, hL, hmask), context = featurize(batch, context=True)
cand_ppl2 = evaluator[1].log_prob(hS, hmask, context=context).ppl.exp()
cand_ppl3 = evaluator[2].log_prob(hS, hmask, context=context).ppl.exp()
cand_ppl = torch.maximum(cand_ppl1, torch.maximum(cand_ppl2, cand_ppl3))
return cand_ppl.tolist()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--cluster', default='data/covabdab/cdrh3_split.txt')
parser.add_argument('--save_dir', required=True)
parser.add_argument('--load_model', default=None)
parser.add_argument('--log_file', default='log.txt')
parser.add_argument('--architecture', default='hierarchical')
parser.add_argument('--cdr_type', default='3')
parser.add_argument('--hidden_size', type=int, default=256)
parser.add_argument('--batch_size', type=int, default=20)
parser.add_argument('--k_neighbors', type=int, default=9)
parser.add_argument('--update_freq', type=int, default=1)
parser.add_argument('--augment_eps', type=float, default=3.0)
parser.add_argument('--block_size', type=int, default=8)
parser.add_argument('--depth', type=int, default=4)
parser.add_argument('--vocab_size', type=int, default=21)
parser.add_argument('--num_rbf', type=int, default=16)
parser.add_argument('--dropout', type=float, default=0.1)
parser.add_argument('--lr', type=float, default=1e-3)
parser.add_argument('--epochs', type=int, default=10000)
parser.add_argument('--seed', type=int, default=7)
parser.add_argument('--valid_iter', type=int, default=1000)
parser.add_argument('--max_prior_ppl', type=float, default=10)
args = parser.parse_args()
args.graft = 0
args.context = True
print(args)
os.makedirs(args.save_dir, exist_ok=True)
log_file = open(os.path.join(args.save_dir, args.log_file), 'w')
split_map = {}
with open(args.cluster) as f:
for line in f:
cdr3, fold = line.strip("\r\n ").split()
split_map[cdr3] = fold
torch.manual_seed(args.seed)
np.random.seed(args.seed)
random.seed(args.seed)
predictor = CovidNeutralizationModel()
model = HierarchicalDecoder(args).cuda()
# Language model ensemble (ensure CDR naturalness)
evaluator = [None, None, None]
eval_args = deepcopy(args)
eval_args.hidden_size = 256
eval_args.depth = 4
eval_args.block_size = 8
evaluator[0] = HierarchicalDecoder(eval_args).cuda()
evaluator[0].eval()
model_ckpt = torch.load("ckpts/covid/hieratt.ckpt")[0]
evaluator[0].load_state_dict(model_ckpt)
eval_args = deepcopy(args)
eval_args.hidden_size = 128
eval_args.depth = 1
evaluator[1] = Seq2Seq(eval_args).cuda()
evaluator[1].eval()
model_ckpt = torch.load("ckpts/covid/lstm.ckpt")[0]
evaluator[1].load_state_dict(model_ckpt)
eval_args = deepcopy(args)
eval_args.hidden_size = 256
eval_args.depth = 3
evaluator[2] = Decoder(eval_args, return_coords=False).cuda()
evaluator[2].eval()
model_ckpt = torch.load("ckpts/covid/autoreg.ckpt")[0]
evaluator[2].load_state_dict(model_ckpt)
optimizer = torch.optim.Adam(model.parameters())
if args.load_model:
model_ckpt, opt_ckpt = torch.load(args.load_model)
model.load_state_dict(model_ckpt)
optimizer.load_state_dict(opt_ckpt)
all_ab = [make_entry(d, args) for d in load_data() if d['hcdr3'] in d['ab'] and d['mask'] == 1]
for entry in tqdm(all_ab):
entry['score'] = predictor.predict(entry['VH'], entry['VL'])
train_ab = [d for d in all_ab if split_map[d['hcdr3']] == 'train' and d['label'] == 1]
val_ab = [d for d in all_ab if split_map[d['hcdr3']] == 'val' and d['label'] == 1]
test_ab = [d for d in all_ab if split_map[d['hcdr3']] == 'test' and d['label'] == 1]
print("train/val/test:", len(train_ab), len(val_ab), len(test_ab))
train_data = {entry['name'] : [entry] for entry in train_ab}
best_score, best_epoch = -10.0, 0
for e in trange(args.epochs):
# Decode new cdrs
ab = random.choice(train_ab)
name = ab['name']
new_seqs = decode(model, ab, args)
#print(new_seqs)
prior_ppl = is_natural_seq(evaluator, ab, new_seqs)
for new_cdr, ppl in zip(new_seqs, prior_ppl):
if is_valid_seq(new_cdr) and ppl <= args.max_prior_ppl:
entry = deepcopy(ab)
entry['VH'] = entry['VH'].replace(entry['hcdr3'], new_cdr)
prob = predictor.predict(entry['VH'], entry['VL'])
#print(name, entry['hcdr3'], entry['score'], '-->', new_cdr, prob)
if prob > entry['score']:
entry['score'] = prob
entry['hcdr3'] = new_cdr
entry['seq'] = entry['VH'] if args.architecture == 'hierarchical' else entry['hcdr3']
train_data[name].append(entry)
if name in train_data:
dlist = sorted(train_data[name], key=lambda d:d['score'], reverse=True)
train_data[name] = dlist[:args.batch_size]
# Train model
model.train()
optimizer.zero_grad()
train_keys = sorted(train_data.keys())
name = random.choice(train_keys)
batch = train_data[name]
if args.architecture == 'hierarchical':
hX, hS, hL, hmask = completize(batch)
loss = model.log_prob(hS, hL, hmask).nll
else:
(hX, hS, hL, hmask), context = featurize(batch, context=True)
loss = model.log_prob(hS, hmask, context=context).nll
loss.backward()
optimizer.step()
if (e + 1) % args.valid_iter == 0:
ckpt = (model.state_dict(), optimizer.state_dict())
torch.save(ckpt, os.path.join(args.save_dir, f"model.ckpt.{e+1}"))
val_score = evaluate(model, predictor, evaluator, val_ab, args)
print(f'Epoch {e+1}: average neutralization score: {val_score:.3f}')
if val_score > best_score:
best_epoch = e + 1
best_score = val_score
best_epoch = 10000
if best_epoch > 0:
best_ckpt = os.path.join(args.save_dir, f"model.ckpt.{best_epoch}")
model.load_state_dict(torch.load(best_ckpt)[0])
test_score = evaluate(model, predictor, evaluator, test_ab, args)
print(f'Test average neutralization score: {test_score:.3f}')