-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathParticleEx4.m
143 lines (128 loc) · 4.54 KB
/
ParticleEx4.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
function [StdRMSErr, AuxRMSErr] = ParticleEx4
% Particle filter example.
% Track a body falling through the atmosphere.
% This system is taken from [Jul00], which was based on [Ath68].
% http://backup.lara.unb.br/~gaborges/disciplinas/efe/papers/julier2000.pdf
% Compare the particle filter with the auxiliary particle filter.
global rho0 g k dt
rho0 = 2; % lb-sec^2/ft^4
g = 32.2; % ft/sec^2
k = 2e4; % ft
R = 10^4; % measurement noise variance (ft^2)
Q = diag([0 0 0]); % process noise covariance
M = 10^5; % horizontal range of position sensor
a = 10^5; % altitude of position sensor
P = diag([1e6 4e6 10]); % initial estimation error covariance
x = [3e5; -2e4; 1e-3]; % initial state
xhat = [3e5; -2e4; 1e-3]; % initial state estimate
N = 200; % number of particles
% Initialize the particle filter.
for i = 1 : N
xhatplus(:,i) = x + sqrt(P) * [randn; randn; randn]; % standard particle filter
end
T = 0.5; % measurement time step
randn('state',sum(100*clock)); % random number generator seed
tf = 30; % simulation length (seconds)
dt = 0.5; % time step for integration (seconds)
xArray = x;
xhatArray = xhat;
for t = T : T : tf
fprintf('.');
% Simulate the system.
for tau = dt : dt : T
% Fourth order Runge Kutta ingegration
[dx1, dx2, dx3, dx4] = RungeKutta(x);
x = x + (dx1 + 2 * dx2 + 2 * dx3 + dx4) / 6;
x = x + sqrt(dt * Q) * [randn; randn; randn] * dt;
end
% Simulate the noisy measurement.
z = sqrt(M^2 + (x(1)-a)^2) + sqrt(R) * randn;
% Simulate the continuous-time part of the particle filter (time update).
xhatminus = xhatplus;
for i = 1 : N
for tau = dt : dt : T
% Fourth order Runge Kutta ingegration
% standard particle filter
[dx1, dx2, dx3, dx4] = RungeKutta(xhatminus(:,i));
xhatminus(:,i) = xhatminus(:,i) + (dx1 + 2 * dx2 + 2 * dx3 + dx4) / 6;
xhatminus(:,i) = xhatminus(:,i) + sqrt(dt * Q) * [randn; randn; randn] * dt;
xhatminus(3,i) = max(0, xhatminus(3,i)); % the ballistic coefficient cannot be negative
end
zhat = sqrt(M^2 + (xhatminus(1,i)-a)^2);
vhat(i) = z - zhat;
end
% Note that we need to scale all of the q(i) probabilities in a way
% that does not change their relative magnitudes.
% Otherwise all of the q(i) elements will be zero because of the
% large value of the exponential.
% standard particle filter
vhatscale = max(abs(vhat)) / 4;
qsum = 0;
for i = 1 : N
q(i) = exp(-(vhat(i)/vhatscale)^2);
qsum = qsum + q(i);
end
% Normalize the likelihood of each a priori estimate.
for i = 1 : N
q(i) = q(i) / qsum;
end
% Resample the standard particle filter
for i = 1 : N
u = rand; % uniform random number between 0 and 1
qtempsum = 0;
for j = 1 : N
qtempsum = qtempsum + q(j);
if qtempsum >= u
xhatplus(:,i) = xhatminus(:,j);
xhatplus(3,i) = max(0,xhatplus(3,i)); % the ballistic coefficient cannot be negative
break;
end
end
end
% The standard particle filter estimate is the mean of the particles.
xhat = mean(xhatplus')';
% Save data for plotting.
xArray = [xArray x];
xhatArray = [xhatArray xhat];
end
close all;
t = 0 : T : tf;
figure;
figure;
plot(t, xArray(1,:)); hold all
plot(t, xhatArray(1, :));
set(gca,'FontSize',12); set(gcf,'Color','White');
xlabel('Seconds');
ylabel('Position');
legend('True state', 'particle filter');
figure;
plot(t, xArray(2,:)); hold all
plot(t, xhatArray(2, :));
title('Falling Body Simulation', 'FontSize', 12);
set(gca,'FontSize',12); set(gcf,'Color','White');
xlabel('Seconds');
ylabel('Velocity');
legend('True state', 'particle filter');
function [dx1, dx2, dx3, dx4] = RungeKutta(x)
% Fourth order Runge Kutta integration for the falling body system.
global rho0 g k dt
dx1(1,1) = -x(2);
dx1(2,1) = rho0 * exp(-x(1)/k) * x(2)^2 / 2 * x(3) - g;
dx1(3,1) = 0;
dx1 = dx1 * dt;
xtemp = x + dx1 / 2;
dx2(1,1) = -xtemp(2);
dx2(2,1) = rho0 * exp(-xtemp(1)/k) * xtemp(2)^2 / 2 * xtemp(3) - g;
dx2(3,1) = 0;
dx2 = dx2 * dt;
xtemp = x + dx2 / 2;
dx3(1,1) = -xtemp(2);
dx3(2,1) = rho0 * exp(-xtemp(1)/k) * xtemp(2)^2 / 2 * xtemp(3) - g;
dx3(3,1) = 0;
dx3 = dx3 * dt;
xtemp = x + dx3;
dx4(1,1) = -xtemp(2);
dx4(2,1) = rho0 * exp(-xtemp(1)/k) * xtemp(2)^2 / 2 * xtemp(3) - g;
dx4(3,1) = 0;
dx4 = dx4 * dt;
return;