-
Notifications
You must be signed in to change notification settings - Fork 0
/
normalEqComb.m
62 lines (61 loc) · 2.14 KB
/
normalEqComb.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
function [ Z,numChol,numEq ] = normalEqComb( AtA,AtB,PassSet )
% Solve normal equations using combinatorial grouping.
% Reference:
% M. H. Van Benthem and M. R. Keenan,
% Fast Algorithm for the Solution of Large-scale Non-negativity-constrained
% Least Squares Problems.
% J. Chemometrics, 18, pp. 441-450, 2004.
%
% This function was originally adopted from above paper, but a few
% important modifications have been made.
%
% Modified by Jingu Kim (jingu.kim@gmail.com)
% School of Computational Science and Engineering,
% Georgia Institute of Technology
%
% Updated Aug-12-2009
% Updated Mar-13-2011: numEq,numChol
%
% numChol : number of unique cholesky decompositions done
% numEqs : number of systems of linear equations solved
if isempty(AtB)
Z = [];
numChol = 0; numEq = 0;
elseif (nargin==2) || all(PassSet(:))
Z = AtA\AtB;
numChol = 1; numEq = size(AtB,2);
elseif size(AtA,1) ==1
Z = AtB/AtA;
numChol = 1; numEq = size(AtB,2);
else
Z = zeros(size(AtB));
[n,k1] = size(PassSet);
if k1==1 % Treat a case with a single righthand side seperately
if any(PassSet)>0
Z(PassSet)=AtA(PassSet,PassSet)\AtB(PassSet);
numChol = 1; numEq = 1;
else
numChol = 0; numEq = 0;
end
else
% Original function has limitations in the length of solution vector.
[sortedPassSet,sortIx] = sortrows(PassSet');
breaks = any(diff(sortedPassSet)');
breakIx = [0 find(breaks) k1];
% Skip columns with no passive sets
if any(sortedPassSet(1,:))==0;
startIx = 2;
else
startIx = 1;
end
numChol = 0;
numEq = k1-breakIx(startIx);
for k=startIx:length(breakIx)-1
cols = sortIx(breakIx(k)+1:breakIx(k+1));
vars = sortedPassSet(breakIx(k)+1,:)';
Z(vars,cols) = AtA(vars,vars)\AtB(vars,cols);
numChol = numChol + 1;
end
end
end
end