-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathsg_cube_mask.m
55 lines (37 loc) · 1.13 KB
/
sg_cube_mask.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
function cube_mask = sg_cube_mask(boxsize,sigma)
%% sg_cube_mask
% Generate a cubic edge mask with gaussian dropoff. This can be useful for
% minimizing edge artifcats when calculating Fourier transforms.
%
% WW 10-2018
%% Check check
if numel(boxsize) == 1
boxsize = ones(3,1).*boxsize;
end
if numel(sigma) == 1
sigma = ones(3,1).*sigma;
end
%% Calculate linear mask
% Linear mask array
lin_mask = cell(3,1);
% Loop through each dimension
for i = 1:3
% Center of box
cen = floor(boxsize(i)/2)+1;
% Linear distance
lin_dist = abs((1:boxsize(i))-cen)';
% Passthrough indices
radius = cen-floor(sigma(i)*1.8);
sigma_idx = lin_dist > radius;
% Linear mask
lin_mask{i} = ones(boxsize(i),1);
lin_mask{i}(sigma_idx) = exp(-((lin_dist(sigma_idx)-radius)/sigma(i)).^2);
lin_mask{i}(lin_mask{i} < exp(-2)) = 0;
end
%% Generate cubic filter
% X-mask
cube_mask = repmat(lin_mask{1},[1,boxsize(2),boxsize(3)]);
% Y-mask
cube_mask = cube_mask.*repmat(reshape(lin_mask{2},1,[]),[boxsize(1),1,boxsize(3)]);
% Z-mask
cube_mask = cube_mask.*repmat(reshape(lin_mask{3},1,1,[]),[boxsize(1),boxsize(2),1]);