
Waku Message UID (v2) 1

📒
Waku Message UID (v2)

Created time

Last edited time

Scope Product

Tags adr

Issue link

Related pages

Context and previous attempts
Message deduplication in Waku Relay (Gossipsub)
The Message Cache and the Seen Cache perform message deduplication in Waku Relay.
These two deduplication structures rely on a unique ID which, at the moment of writing, is
computed as follows:

message_id: [u8; 32] = sha256(WakuMessageBuffer)

These structures provide a limited-time message deduplication capability o keep the memory
footprint low. The Message Cache provides a short-term deduplication capability (~5 heartbeat
periods). The Seen Cache, implemented as a bloom filter, provides a longer-term deduplication
capability (~2 minutes).

Based on the fact that WakuMessage is formatted using protocol buffers, and this serialization
mechanism is not deterministic, there is a possibility that the Seen Cache fails to lead to
duplicated messages by just reordering the different fields that are serialized.

Libp2p’s Gossipsub message validation
The Gossipsub v1.0 specification states the following about the message validation:

Payload processing will validate the message according to application-
defined rules and check the seen cache to determine if the message has
been processed previously.

@February 1, 2023 4:41 PM

@February 2, 2023 11:16 AM

https://github.com/libp2p/specs/blob/master/pubsub/gossipsub/gossipsub-v1.0.md#message-processing:~:text=Payload%20processing%20will%20validate%20the%20message%20according%20to%20application%2Ddefined%20rules%20and%20check%20the%20seen%20cache%20to%20determine%20if%20the%20message%20has%20been%20processed%20previously
https://github.com/libp2p/specs/blob/master/pubsub/gossipsub/gossipsub-v1.0.md#message-cache
https://github.com/libp2p/specs/blob/master/pubsub/gossipsub/gossipsub-v1.0.md#message-cache

Waku Message UID (v2) 2

Essentially, the specification leaves the message validation to the application.

Consequently, the principal Gossipsub implementations (Nim, Go and Rust) do not implement
message integrity or ID validation. And by extension, this is also true for the Waku Relay
protocol, as it is an opinionated version of the Gossipsub protocol.

Message delivery order guarantees in Waku Relay
Gossipsub protocol, due to its flood-distribution nature, cannot guarantee that all messages will
follow the same distribution path. So there is no ordering guarantee per se.

But if two messages are published separately enough in time, we can assume that both
messages will be delivered in a predictable order. The maximum latency of the network
determines this minimum separation.

Records deduplication in Waku Archive
At the moment of writing, the Waku Archive SQLite backend implementation considers two
messages equal if both messages share the same pubsub_topic , content_topic , timestamp and
payload . This criterion is baked into the SQLite’s table PRIMARY KEY . Messages that do not match
the criteria are treated as duplicates.

At the moment of querying via the Waku Store protocol, the results are ordered by the columns
stored_at (equal to the message timestamp if present or to message arrival time otherwise)
and id (computed as Sha256(content_topic, payload).

Records retrieval via Waku Store
At the moment of writing, the Waku Store protocol provides an API supporting retrieving a
filtered list of messages from a remote node. Additionally, as the maximum size supported for a
message is 1MB, the Waku Store query protocol supports a pagination mechanism. This helps
reduce the amount of data downloaded per query to a maximum of 100 messages (100 MB).

However, there is a limitation when verifying missing messages in a node's history.
Downloading large amounts of data, in the order of hundreds of megabytes or even gigabytes,
is not a time and bandwidth-efficient method for this task.

Goal
Definition of a Waku message uniqueness identifier that can be used to deduplicate Waku
messages across the solution.

No goal
Build a blockchain. Consistency guarantees between archive-capable nodes are out of the
scope of the present document.

Address or mitigate all vulnerabilities to which Waku Relay (and Gossipsub) are
susceptible.

https://www.researchgate.net/publication/342734066_GossipSub_Attack-Resilient_Message_Propagation_in_the_Filecoin_and_ETH20_Networks

Waku Message UID (v2) 3

Use cases
Message deduplication in the network.

Message deduplication in the Waku Archive backend (e.g., in a shared backend setup).

Bandwidth-efficient Waku Archive synchronization.

Requirements
Length limited.

Low to negligible collision probability.

Not leaking information (e.g., sender's key).

Application specific (e.g., lexicographic sortable).

Uniqueness is global to the network.

Global to all the nodes publishing in a certain network (pub-sub topic).

Global to the Gossipsub’s pub-sub topics certain store node is subscribed to.

Act as a message integrity check.

As an open network, all nodes should be able to perform a message ID validation.

Pre-requites

The Waku Message’s meta attribute
The Waku Message’s meta attribute is an arbitrary application-specific variable-length byte
array with a maximum length limit of 32 bytes (2^256 possibilities).

The message’s meta field MUST be present and have a length greater than zero in the non-
ephemeral messages (those persisted by the Waku Archive durability service).

The Waku Message UID (MUID)
The Waku Message UID is a two-part variable length identifier that can unequivocally identify
and deduplicate the messages in a Waku network.

The MUID comprises two parts: message checksum and application-specific variable-length
metadata.

muid: [u8; 64] = concat(checksum, metadata)

The maximum length for the MUID is 64 bytes.

Waku Message UID (v2) 4

The checksum part
It is a computable 32 bytes fixed-length checksum based on the content of the Waku Message.
It is defined as follows:

checksum: [u8; 32] = sha256(network_topic, WakuMessage.topic, WakuMessage.meta, WakuMessage.payload)

The checksum part ensures the integrity of the Waku Message contained in the Gossipsub
payload. As any node in the network can compute it, the message integrity can be verified.

The metadata part
It is an application-specific part extracted from the Waku Message’s meta attribute.

Message uniqueness considerations
Two messages are considered equal if they have the same network topic , content topic , meta
attribute, and payload . As the MUID is derived from the message content, both messages share
the same.

The application should provide different meta attributes to different messages to avoid collisions
in the relay and archive collisions.

Example message metadata schemas
Applications should specify the schema for the Waku Message’s meta attribute. The selected
schema will affect the application's messages' privacy, security and message collision
probability.

These are some example schemas that could be used:

Timestamp (e.g., int64 Unix Epoch nanoseconds timestamp):

PRO: Simple, performant generation, “backwards compatible”, fine grain sortable at
archive query results (precision in ns).

CON: Prone to collision/message duplication, traceable/graph learning

ULID:

PRO: Medium complexity, performant generation, negligible collision probability, fine
grain sortable at archive query results (precision in ms).

CON: traceable/graph learning

UUID (e.g., UUID v4):

PRO: Medium complexity, performant generation, negligible collision probability, no
traceability (random data).

Waku Message UID (v2) 5

CON: Coarse sortability at archive query time.

Noise Sessions (e.g., encrypted metadata/info):

PRO: Negligible collision probability (if the content is well thought), contains metadata,
non-traceable (looks like random data).

CON: High complexity, not-so-performant generation (hashing, encryption), not
sortable at archive query time.

Waku Relay: deduplication and integrity
Based on the low collision probability of some of the schemas described above, this MUID
could be used as the message and seen caches key.

A message that reuses the same ID with a different payload within the Message Cache window
won’t be relayed. In the same way, if it is replayed within the Seen Cache window, it won’t be
received by subscribers.

Additionally, as all nodes can compute the checksum part of a message ID, a validator can be
integrated to guarantee the Waku Message integrity.

Waku Archive and Waku Store: durable streams

ℹ The terms event, message, and record are synonyms in the Waku Archive context.
Thus they can be used interchangeably. Although the record term is preferred over
the others when talking about individual items in an events log.

From the Waku product document’s terms and concepts:

Waku platform events are organized and durably stored in topics, also
called content topics. And a sequence of events published on the
same topic constitutes an event stream.

Event recording
The Waku Archive stream durability service is responsible for recording and persisting in a
long-term storage system the events that occurred in a certain event stream. This persistence
follows two rules:

Messages should be stored following the arrival order (FIFO).

Messages should be deduplicated based on the MUID (the same criteria used in the Waku
Relay layer).

Optionally, messages can be tagged with arrival time timestamps for coarse-ordering purposes.

Waku Message UID (v2) 6

Queriable event log
Additionally to the event recording system, the Waku Archive service features a searchable log
functionality and provides an interface for retrieving messages from the previously described
event recording system. And the Waku Store historical messages query protocol sits on top of
this interface, making it easily accessible through a remote procedure call (RPC) interface.

Waku Store’s bandwidth-consumption optimization
Based on the assumption that MUIDs are globally unique to all messages. We can understand
archive-capable nodes as key-value stores. The MUID would be the key, and the message
would be the value.

With that approach, the current Waku Store protocol RPCs can be extended to support a
message ID query mechanism. The new Waku Store protocol APIs will look like this:

Query a list of messages based on certain filter criteria (e.g., network, content topic, time
range, etc.).

Query a list of MUIDs based on certain filter criteria (e.g., network, content topic, time
range, etc.).

Query messages by a MUIDs list.

With a maximum size of 32 bytes, the number of UIDs per query response can be higher,
saving bandwidth and reducing the “time-to-sync” metric.

It is discretionary to the application in which APIs are used and when. For example,
bootstrapping the node’s history and getting the first 50 messages that fit the screen for a
hypothetical messaging app can make a difference in the perceived UX. Once bootstrapped the
node’s message history, the same application could use the MUID-based query mechanism to
efficiently retrieve the missing messages and complete the rest of the messages’ history.

Waku Store’s message decryption optimization
Additionally, as the MUID must contain application-specific metadata, a Waku Store client can
identify the messages in the list of MUIDs retrieved from the Waku Archive.

This will reduce bandwidth consumption and the CPU load derived from downloading a big list
of messages from another’s node history and decrypting all the messages to filter only the
application ones.

Waku Store’s message integrity check
In the same way, the Waku Relay nodes can validate a message by computing the checksum
part of the message; a Waku Store client can determine if any record has been maliciously
modified and certify the integrity of the received entry.

Conclusions and future work

Waku Message UID (v2) 7

This proposal extends the current model and tries to unify the Waku platform’s relay (Waku
Relay) layer with the platform’s stream durability functionality (Waku Archive) and the stream
history query functionality (Waku Store).

Eventually, this UID-based history synchronization mechanism has the potential to be evolved
into a fully-fledged history synchronization mechanism. Due to this unified approach, it has the
potential to be added as a Gossipsub extension adding a “durable stream capability” to the
protocol.

An in-depth privacy and security analysis is pending.

