
Waku Message UID 1

📒
Waku Message UID

Created time

Last edited time

Scope Product

Tags

Issue link

Related pages

Context and previous attempts
Message deduplication in Waku Relay (Gossipsub)
The Message Cache and the Seen Cache perform message deduplication in Waku
Relay. These two deduplication structures rely on a unique ID at the moment of
writing, which is computed as follows:

MessageId = HASH(WakuMessageBuffer)

These structures provide a limited-time message deduplication capability o keep the
memory footprint low. The Message Cache provides a short-term deduplication
capability (~5 heartbeat periods). The Seen Cache, implemented as a bloom filter,
provides a longer-term deduplication capability (~2 minutes).

Based on the fact that WakuMessage is formatted using protocol buffers, and this
serialization mechanism is not deterministic, there is a possibility that the Seen
Cache fails to lead to duplicated messages by just reordering the different fields that
are serialized.

Records deduplication in Waku Archive

@January 16, 2023 12:08 PM

@January 17, 2023 6:40 PM

Waku Message UID 2

At the moment of writing, the Waku Archive SQLite backend implementation
considers two messages equal if both messages share the same pubsub_topic ,
content_topic , timestamp and payload . This criterion is baked into the SQLite’s table
PRIMARY KEY . Messages that do not match the criteria are treated as duplicates.

At the moment of querying via the Waku Store protocol, the results are ordered by
the columns stored_at (equal to the message timestamp if present or to message
arrival time otherwise) and id (computed as Sha256(content_topic, payload).

Records retrieval via Waku Store
At the moment of writing, the Waku Store protocol provides an API supporting
retrieving a filtered list of messages from a remote node. Additionally, as the
maximum size supported for a message is 1MB, the Waku Store query protocol
supports a pagination mechanism. This helps reduce the amount of data
downloaded per query to a maximum of 100 messages (100 MB).

However, there is a limitation when verifying missing messages in a node's history.
Downloading large amounts of data, in the order of hundreds of megabytes or even
gigabytes, is not a time and bandwidth-efficient method for this task.

Message delivery order guarantees in Waku Relay (Gossipsub)
Gossipsub protocol, due to its flood-distribution nature, cannot guarantee that all
messages will follow the same distribution path. So there is no ordering guarantee
per se.

But if two messages are published separately enough in time, we can assume that
both messages will be delivered in a predictable order. The maximum latency of the
network determines this minimum separation.

Goal
Definition of a Waku message uniqueness identifier that can be used to deduplicate
Waku messages across the solution.

No goal
Build a blockchain. Consistency guarantees between archive-capable nodes are out
of the scope of the present document.

Waku Message UID 3

Use cases
Message deduplication in the network.

Message deduplication in the Waku Archive backend (e.g., in a shared backend
setup).

Bandwidth-efficient Waku Archive synchronization.

Requirements
Length limited.

Low to negligible collision probability.

Not leaking information (e.g., sender's key).

Application specific (e.g., lexicographic sortable).

Uniqueness is global to the network.

Global to all the nodes publishing in a certain network (pub-sub topic).

Global to the Gossipsub’s pub-sub topics certain store node is subscribed to.

Proposal: Message UID
Add a mandatory attribute of arbitrary application-specific content limited to 32
bytes (2^256 possibilities) called WakuMessage.uid . Mandatory if archiving
capabilities are required.

Deprecate WakuMessage.timestamp field.

Application specific
Applications should specify the schema for the identifier attribute. The UID schema
will affect the privacy, security and message collision probability of the application’s
messages:

Timestamp (e.g., int64 Unix Epoch nanoseconds timestamp):

PRO: Simple, performant generation, “backwards compatible”, fine grain
sortable at archive query results (precision in ns).

CON: Prone to collision/message duplication, traceable/graph learning

Waku Message UID 4

ULID:

PRO: Medium complexity, performant generation, negligible collision
probability, fine grain sortable at archive query results (precision in ms).

CON: traceable/graph learning

UUID (e.g., UUID v4):

PRO: Medium complexity, performant generation, negligible collision
probability, no traceability (random data).

CON: Coarse sortability at archive query time.

Application-specific schema (e.g., Sha256 signature, Encrypted meta-info):

PRO: Negligible collision probability (if the content is well thought), contains
metadata, non-traceable (looks like random data).

CON: High complexity, not-so-performant generation (hashing, encryption),
not sortable at archive query time.

Waku Relay: message deduplication
Based on the low collision probability of some of the schemas described above, this
UID attribute could be used as the cache ID, replacing the need to hash the entire
byte array by just deserializing the uid attribute.

A message that reuses the same ID with a different payload within the Message
Cache window won’t be relayed. In the same way, if it is replayed within the Seen
Cache window, it won’t be received by subscribers.

Waku Archive and Waku Store: durable
streams

ℹ The terms event, message, and record are synonyms in the Waku Archive
context. Thus they can be used interchangeably. Although the record term
is preferred over the others when talking about individual items in an
events log.

From the Waku product document’s terms and concepts:

Waku Message UID 5

Waku platform events are organized and durably stored in
topics, also called content topics. And a sequence of events
published on the same topic constitutes an event stream.

Event recording
The Waku Archive stream durability service is responsible for recording and
persisting in a long-term storage system the events that occurred in a certain event
stream. This persistence follows two rules:

Messages should be stored following the arrival order (FIFO).

Messages should be deduplicated based on the UID attribute (the same criteria
used in the Waku Relay layer).

Optionally, messages can be tagged with arrival time timestamps for coarse-ordering
purposes.

Queriable event log
Additionally to the event recording system, the Waku Archive service features a
searchable log functionality and provides an interface for retrieving messages from
the previously described event recording system. And the Waku Store historical
messages query protocol sits on top of this interface, making it easily accessible
through a remote procedure call (RPC) interface.

Waku Store’s bandwidth-consumption optimization
Based on the assumption that UID identifiers are globally unique to all messages.
We can understand archive-capable nodes as key-value stores. The UID would be
the key, and the message would be the value.

With that approach, the current Waku Store protocol RPCs can be extended to
support a message ID query mechanism. The new Waku Store protocol APIs will
look like this:

Query a list of messages based on certain filter criteria (e.g., network, content
topic, time range, etc.).

Query a list of message UIDs based on certain filter criteria (e.g., network,
content topic, time range, etc.).

Query messages by a UIDs list.

Waku Message UID 6

With a maximum size of 32 bytes, the number of UIDs per query response can be
higher, saving bandwidth and reducing the “time-to-sync” metric.

It is discretionary to the application in which APIs are used and when. For example,
bootstrapping the node’s history and getting the first 50 messages that fit the screen
for a hypothetical messaging app can make a difference in the perceived UX. Once
bootstrapped the node’s message history, the same application could use the UID-
based query mechanism to efficiently retrieve the missing messages and complete
the rest of the messages’ history.

Conclusions and future work
This proposal extends the current model and tries to unify the Waku platform’s relay
(Waku Relay) layer with the platform’s stream durability functionality (Waku Archive)
and the stream history query functionality (Waku Store).
Eventually, this UID-based history synchronization mechanism has the potential to
be evolved into a fully-fledged history synchronization mechanism. Due to this
unified approach, it has the potential to be added as a Gossipsub extension adding a
“durable stream capability” to the protocol.

A in depth privacy and security analysis is pending.

