-
Notifications
You must be signed in to change notification settings - Fork 64
/
Copy pathmain.py
247 lines (217 loc) · 9.65 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
import copy
import json
import os
import warnings
import torch
from absl import app, flags
from tensorboardX import SummaryWriter
from torchvision.datasets import CIFAR10
from torchvision.utils import make_grid, save_image
from torchvision import transforms
from tqdm import trange
from diffusion import GaussianDiffusionTrainer, GaussianDiffusionSampler
from model import UNet
from score.both import get_inception_and_fid_score
FLAGS = flags.FLAGS
flags.DEFINE_bool('train', False, help='train from scratch')
flags.DEFINE_bool('eval', False, help='load ckpt.pt and evaluate FID and IS')
# UNet
flags.DEFINE_integer('ch', 128, help='base channel of UNet')
flags.DEFINE_multi_integer('ch_mult', [1, 2, 2, 2], help='channel multiplier')
flags.DEFINE_multi_integer('attn', [1], help='add attention to these levels')
flags.DEFINE_integer('num_res_blocks', 2, help='# resblock in each level')
flags.DEFINE_float('dropout', 0.1, help='dropout rate of resblock')
# Gaussian Diffusion
flags.DEFINE_float('beta_1', 1e-4, help='start beta value')
flags.DEFINE_float('beta_T', 0.02, help='end beta value')
flags.DEFINE_integer('T', 1000, help='total diffusion steps')
flags.DEFINE_enum('mean_type', 'epsilon', ['xprev', 'xstart', 'epsilon'], help='predict variable')
flags.DEFINE_enum('var_type', 'fixedlarge', ['fixedlarge', 'fixedsmall'], help='variance type')
# Training
flags.DEFINE_float('lr', 2e-4, help='target learning rate')
flags.DEFINE_float('grad_clip', 1., help="gradient norm clipping")
flags.DEFINE_integer('total_steps', 800000, help='total training steps')
flags.DEFINE_integer('img_size', 32, help='image size')
flags.DEFINE_integer('warmup', 5000, help='learning rate warmup')
flags.DEFINE_integer('batch_size', 128, help='batch size')
flags.DEFINE_integer('num_workers', 4, help='workers of Dataloader')
flags.DEFINE_float('ema_decay', 0.9999, help="ema decay rate")
flags.DEFINE_bool('parallel', False, help='multi gpu training')
# Logging & Sampling
flags.DEFINE_string('logdir', './logs/DDPM_CIFAR10_EPS', help='log directory')
flags.DEFINE_integer('sample_size', 64, "sampling size of images")
flags.DEFINE_integer('sample_step', 1000, help='frequency of sampling')
# Evaluation
flags.DEFINE_integer('save_step', 5000, help='frequency of saving checkpoints, 0 to disable during training')
flags.DEFINE_integer('eval_step', 0, help='frequency of evaluating model, 0 to disable during training')
flags.DEFINE_integer('num_images', 50000, help='the number of generated images for evaluation')
flags.DEFINE_bool('fid_use_torch', False, help='calculate IS and FID on gpu')
flags.DEFINE_string('fid_cache', './stats/cifar10.train.npz', help='FID cache')
device = torch.device('cuda:0')
def ema(source, target, decay):
source_dict = source.state_dict()
target_dict = target.state_dict()
for key in source_dict.keys():
target_dict[key].data.copy_(
target_dict[key].data * decay +
source_dict[key].data * (1 - decay))
def infiniteloop(dataloader):
while True:
for x, y in iter(dataloader):
yield x
def warmup_lr(step):
return min(step, FLAGS.warmup) / FLAGS.warmup
def evaluate(sampler, model):
model.eval()
with torch.no_grad():
images = []
desc = "generating images"
for i in trange(0, FLAGS.num_images, FLAGS.batch_size, desc=desc):
batch_size = min(FLAGS.batch_size, FLAGS.num_images - i)
x_T = torch.randn((batch_size, 3, FLAGS.img_size, FLAGS.img_size))
batch_images = sampler(x_T.to(device)).cpu()
images.append((batch_images + 1) / 2)
images = torch.cat(images, dim=0).numpy()
model.train()
(IS, IS_std), FID = get_inception_and_fid_score(
images, FLAGS.fid_cache, num_images=FLAGS.num_images,
use_torch=FLAGS.fid_use_torch, verbose=True)
return (IS, IS_std), FID, images
def train():
# dataset
dataset = CIFAR10(
root='./data', train=True, download=True,
transform=transforms.Compose([
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
]))
dataloader = torch.utils.data.DataLoader(
dataset, batch_size=FLAGS.batch_size, shuffle=True,
num_workers=FLAGS.num_workers, drop_last=True)
datalooper = infiniteloop(dataloader)
# model setup
net_model = UNet(
T=FLAGS.T, ch=FLAGS.ch, ch_mult=FLAGS.ch_mult, attn=FLAGS.attn,
num_res_blocks=FLAGS.num_res_blocks, dropout=FLAGS.dropout)
ema_model = copy.deepcopy(net_model)
optim = torch.optim.Adam(net_model.parameters(), lr=FLAGS.lr)
sched = torch.optim.lr_scheduler.LambdaLR(optim, lr_lambda=warmup_lr)
trainer = GaussianDiffusionTrainer(
net_model, FLAGS.beta_1, FLAGS.beta_T, FLAGS.T).to(device)
net_sampler = GaussianDiffusionSampler(
net_model, FLAGS.beta_1, FLAGS.beta_T, FLAGS.T, FLAGS.img_size,
FLAGS.mean_type, FLAGS.var_type).to(device)
ema_sampler = GaussianDiffusionSampler(
ema_model, FLAGS.beta_1, FLAGS.beta_T, FLAGS.T, FLAGS.img_size,
FLAGS.mean_type, FLAGS.var_type).to(device)
if FLAGS.parallel:
trainer = torch.nn.DataParallel(trainer)
net_sampler = torch.nn.DataParallel(net_sampler)
ema_sampler = torch.nn.DataParallel(ema_sampler)
# log setup
os.makedirs(os.path.join(FLAGS.logdir, 'sample'))
x_T = torch.randn(FLAGS.sample_size, 3, FLAGS.img_size, FLAGS.img_size)
x_T = x_T.to(device)
grid = (make_grid(next(iter(dataloader))[0][:FLAGS.sample_size]) + 1) / 2
writer = SummaryWriter(FLAGS.logdir)
writer.add_image('real_sample', grid)
writer.flush()
# backup all arguments
with open(os.path.join(FLAGS.logdir, "flagfile.txt"), 'w') as f:
f.write(FLAGS.flags_into_string())
# show model size
model_size = 0
for param in net_model.parameters():
model_size += param.data.nelement()
print('Model params: %.2f M' % (model_size / 1024 / 1024))
# start training
with trange(FLAGS.total_steps, dynamic_ncols=True) as pbar:
for step in pbar:
# train
optim.zero_grad()
x_0 = next(datalooper).to(device)
loss = trainer(x_0).mean()
loss.backward()
torch.nn.utils.clip_grad_norm_(
net_model.parameters(), FLAGS.grad_clip)
optim.step()
sched.step()
ema(net_model, ema_model, FLAGS.ema_decay)
# log
writer.add_scalar('loss', loss, step)
pbar.set_postfix(loss='%.3f' % loss)
# sample
if FLAGS.sample_step > 0 and step % FLAGS.sample_step == 0:
net_model.eval()
with torch.no_grad():
x_0 = ema_sampler(x_T)
grid = (make_grid(x_0) + 1) / 2
path = os.path.join(
FLAGS.logdir, 'sample', '%d.png' % step)
save_image(grid, path)
writer.add_image('sample', grid, step)
net_model.train()
# save
if FLAGS.save_step > 0 and step % FLAGS.save_step == 0:
ckpt = {
'net_model': net_model.state_dict(),
'ema_model': ema_model.state_dict(),
'sched': sched.state_dict(),
'optim': optim.state_dict(),
'step': step,
'x_T': x_T,
}
torch.save(ckpt, os.path.join(FLAGS.logdir, 'ckpt.pt'))
# evaluate
if FLAGS.eval_step > 0 and step % FLAGS.eval_step == 0:
net_IS, net_FID, _ = evaluate(net_sampler, net_model)
ema_IS, ema_FID, _ = evaluate(ema_sampler, ema_model)
metrics = {
'IS': net_IS[0],
'IS_std': net_IS[1],
'FID': net_FID,
'IS_EMA': ema_IS[0],
'IS_std_EMA': ema_IS[1],
'FID_EMA': ema_FID
}
pbar.write(
"%d/%d " % (step, FLAGS.total_steps) +
", ".join('%s:%.3f' % (k, v) for k, v in metrics.items()))
for name, value in metrics.items():
writer.add_scalar(name, value, step)
writer.flush()
with open(os.path.join(FLAGS.logdir, 'eval.txt'), 'a') as f:
metrics['step'] = step
f.write(json.dumps(metrics) + "\n")
writer.close()
def eval():
# model setup
model = UNet(
T=FLAGS.T, ch=FLAGS.ch, ch_mult=FLAGS.ch_mult, attn=FLAGS.attn,
num_res_blocks=FLAGS.num_res_blocks, dropout=FLAGS.dropout)
sampler = GaussianDiffusionSampler(
model, FLAGS.beta_1, FLAGS.beta_T, FLAGS.T, img_size=FLAGS.img_size,
mean_type=FLAGS.mean_type, var_type=FLAGS.var_type).to(device)
if FLAGS.parallel:
sampler = torch.nn.DataParallel(sampler)
# load model and evaluate
ckpt = torch.load(os.path.join(FLAGS.logdir, 'ckpt.pt'))
model.load_state_dict(ckpt['ema_model'])
(IS, IS_std), FID, samples = evaluate(sampler, model)
print("Model(EMA): IS:%6.3f(%.3f), FID:%7.3f" % (IS, IS_std, FID))
save_image(
torch.tensor(samples[:256]),
os.path.join(FLAGS.logdir, 'samples_ema.png'),
nrow=16)
def main(argv):
# suppress annoying inception_v3 initialization warning
warnings.simplefilter(action='ignore', category=FutureWarning)
if FLAGS.train:
train()
if FLAGS.eval:
eval()
if not FLAGS.train and not FLAGS.eval:
print('Add --train and/or --eval to execute corresponding tasks')
if __name__ == '__main__':
app.run(main)