-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathevaluate_bvqa_features_ordinal_classification.py
299 lines (275 loc) · 11.2 KB
/
evaluate_bvqa_features_ordinal_classification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
# -*- coding: utf-8 -*-
"""
This script shows how to apply 80-20 holdout train and validate regression model to predict
MOS from the features
"""
import pandas
import scipy.io
import numpy as np
import argparse
import time
import math
import os, sys
import numpy as np
from sklearn.impute import SimpleImputer
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error
from sklearn import preprocessing
from scipy.optimize import curve_fit
import mord
from sklearn.svm import SVC
from sklearn.svm import LinearSVC
from sklearn.model_selection import RandomizedSearchCV
import scipy.stats
from concurrent import futures
import functools
import warnings
warnings.filterwarnings("ignore")
# ----------------------- Set System logger ------------- #
class Logger:
def __init__(self, log_file):
self.terminal = sys.stdout
self.log = open(log_file, "a")
def write(self, message):
self.terminal.write(message)
self.log.write(message)
def flush(self):
#this flush method is needed for python 3 compatibility.
#this handles the flush command by doing nothing.
#you might want to specify some extra behavior here.
pass
def arg_parser():
parser = argparse.ArgumentParser()
parser.add_argument('--model_name', type=str, default='BRISQUE',
help='Evaluated BVQA model name.')
parser.add_argument('--dataset_name', type=str, default='LIVE_IQC',
help='Evaluation dataset.')
parser.add_argument('--feature_file', type=str,
default='mos_feat_files/LIVE_IQC_BRISQUE_feats.mat',
help='Pre-computed feature matrix.')
parser.add_argument('--mos_file', type=str,
default='mos_feat_files/LIVE_IQC_metadata.csv',
help='Dataset MOS scores.')
parser.add_argument('--out_file', type=str,
default='result/LIVE_IQC_BRISQUE_SVR_corr.mat',
help='Output correlation results')
parser.add_argument('--log_file', type=str,
default='logs/logs.log',
help='Log files.')
parser.add_argument('--color_only', action='store_true',
help='Evaluate color values only. (Only for YouTube UGC)')
parser.add_argument('--log_short', action='store_true',
help='Whether log short')
parser.add_argument('--use_parallel', action='store_true',
help='Use parallel for iterations.')
parser.add_argument('--num_iterations', type=int, default=20,
help='Number of iterations of train-test splits')
parser.add_argument('--max_thread_count', type=int, default=10,
help='Number of threads.')
args = parser.parse_args()
return args
def logistic_func(X, bayta1, bayta2, bayta3, bayta4):
# 4-parameter logistic function
logisticPart = 1 + np.exp(np.negative(np.divide(X - bayta3, np.abs(bayta4))))
yhat = bayta2 + np.divide(bayta1 - bayta2, logisticPart)
return yhat
def compute_metrics(y_pred, y):
'''
compute metrics btw predictions & labels
'''
# compute mean accuracy
from sklearn.metrics import accuracy_score
acc = accuracy_score(y, y_pred)
mze = 1 - acc
# compute balanced accuracy
from sklearn.metrics import balanced_accuracy_score
bal_acc = balanced_accuracy_score(y, y_pred)
# MAE
from sklearn.metrics import mean_absolute_error
mae = mean_absolute_error(y, y_pred)
return [acc, bal_acc, mze, mae]
def formatted_print(snapshot, params, duration):
print('======================================================')
print('params: ', params)
print('ACC_train: ', snapshot[0])
print('BACC_train: ', snapshot[1])
print('MZE_train: ', snapshot[2])
print('MAE_train: ', snapshot[3])
print('======================================================')
print('ACC_test: ', snapshot[4])
print('BACC_test: ', snapshot[5])
print('MZE_test: ', snapshot[6])
print('MAE_test: ', snapshot[7])
print('======================================================')
print(' -- ' + str(duration) + ' seconds elapsed...\n\n')
def final_avg(snapshot):
def formatted(args, pos):
mean = np.mean(list(map(lambda x: x[pos], snapshot)))
stdev = np.std(list(map(lambda x: x[pos], snapshot)))
print('{}: {} (std: {})'.format(args, mean, stdev))
print('======================================================')
print('Average training results among all repeated 80-20 holdouts:')
formatted("ACC Train", 0)
formatted("BACC Train", 1)
formatted("MZE Train", 2)
formatted("MAE Train", 3)
print('======================================================')
print('Average testing results among all repeated 80-20 holdouts:')
formatted("ACC Test", 4)
formatted("BACC Test", 5)
formatted("MZE Test", 6)
formatted("MAE Test", 7)
print('\n\n')
def evaluate_bvqa_one_split(i, X, y, log_short):
if not log_short:
print('{} th repeated holdout test'.format(i))
t_start = time.time()
# train test split
X_train, X_test, y_train, y_test = \
train_test_split(X, y, test_size=0.2,
random_state=math.ceil(8.8*i), stratify=y)
if X_train.shape[1] <= 4000:
print(f'{X_train.shape[1]}-dim features, using SVM')
# grid search CV on the training set
param_grid = {'C': np.logspace(1, 10, 10, base=2),
'gamma': np.logspace(-8, 1, 10, base=2)}
grid = RandomizedSearchCV(SVC(), param_grid, cv=5)
# param_grid = {'C': [0.001, 0.01, 0.1, 1., 2.5, 5., 10.],
# 'epsilon': [0.001, 0.01, 0.1, 1., 2.5, 5., 10.]}
# grid = RandomizedSearchCV(mord.LAD(), param_grid, cv=3, n_jobs=-1)
else:
print(f'{X_train.shape[1]}-dim features, using LinearSVR')
# grid search on liblinear
param_grid = {'C': [0.001, 0.01, 0.1, 1., 2.5, 5., 10.]}
# 'epsilon': [0.001, 0.01, 0.1, 1., 2.5, 5., 10.]}
grid = RandomizedSearchCV(LinearSVC(), param_grid, cv=5)
scaler = preprocessing.MinMaxScaler().fit(X_train)
X_train = scaler.transform(X_train)
# grid search
grid.fit(X_train, y_train)
best_params = grid.best_params_
# init model
if X_train.shape[1] <= 4000:
regressor = SVC(C=best_params['C'], gamma=best_params['gamma'])
# regressor = mord.LAD(C=best_params['C'], epsilon=best_params['epsilon'])
else:
regressor = LinearSVC(C=best_params['C'])
# re-train the model using the best alpha
regressor.fit(X_train, y_train)
# predictions
y_train_pred = regressor.predict(X_train)
X_test = scaler.transform(X_test)
y_test_pred = regressor.predict(X_test)
# compute metrics
metrics_train = compute_metrics(y_train_pred, y_train)
metrics_test = compute_metrics(y_test_pred, y_test)
# print values
if not log_short:
t_end = time.time()
formatted_print(metrics_train + metrics_test, best_params, (t_end - t_start))
return best_params, metrics_train, metrics_test
def main(args):
df = pandas.read_csv(args.mos_file, skiprows=[], header=None)
array = df.values
if args.dataset_name == 'LIVE_VQC':
y = array[1:,1]
y_mos = np.array(list(y), dtype=np.float)
# q = 25.
# y = np.ceil(y / q)
elif args.dataset_name == 'KONVID_1K':
y = array[1:,1]
y_mos = np.array(list(y), dtype=np.float)
# q = 1.0
# y = np.ceil((y - 1.) / q)
elif args.dataset_name == 'YOUTUBE_UGC':
y = array[1:,4]
y_mos = np.array(list(y), dtype=np.float)
# q = 1.0
# y = np.ceil((y - 1.) / q)
from sklearn.mixture import GaussianMixture
gmm = GaussianMixture(n_components=3)
gmm.fit(y_mos.reshape(-1, 1))
y = gmm.predict(y_mos.reshape(-1, 1))
gmm_means_sort = np.sort(gmm.means_.squeeze())
y_new = np.zeros_like(y)
for i, y_old in enumerate(y):
if y_old == 0:
y_new[i] = np.where(gmm_means_sort == gmm.means_.squeeze()[0])[0][0]
elif y_old == 1:
y_new[i] = np.where(gmm_means_sort == gmm.means_.squeeze()[1])[0][0]
elif y_old == 2:
y_new[i] = np.where(gmm_means_sort == gmm.means_.squeeze()[2])[0][0]
y = y_new
y = y.astype(int)
# print(y)
X_mat = scipy.io.loadmat(args.feature_file)
X = np.asarray(X_mat['feats_mat'], dtype=np.float)
'''57 grayscale videos in YOUTUBE_UGC dataset, we do not consider them for fair comparison'''
if args.color_only and args.dataset_name == 'YOUTUBE_UGC':
gray_indices = [3,6,10,22,23,46,51,52,68,74,77,99,103,122,136,141,158,173,368,426,467,477,506,563,594,\
639,654,657,666,670,671,681,690,697,702,703,710,726,736,764,768,777,786,796,977,990,1012,\
1015,1023,1091,1118,1205,1282,1312,1336,1344,1380]
gray_indices = [idx - 1 for idx in gray_indices]
X = np.delete(X, gray_indices, axis=0)
y = np.delete(y, gray_indices, axis=0)
## preprocessing
X[np.isinf(X)] = np.nan
imp = SimpleImputer(missing_values=np.nan, strategy='mean').fit(X)
X = imp.transform(X)
all_iterations = []
t_overall_start = time.time()
# 100 times random train-test splits
if args.use_parallel is True:
evaluate_bvqa_one_split_partial = functools.partial(
evaluate_bvqa_one_split, X=X, y=y, log_short=args.log_short)
with futures.ThreadPoolExecutor(max_workers=args.max_thread_count) as executor:
iters_future = [
executor.submit(evaluate_bvqa_one_split_partial, i)
for i in range(1, args.num_iterations)]
for future in futures.as_completed(iters_future):
best_params, metrics_train, metrics_test = future.result()
all_iterations.append(metrics_train + metrics_test)
else:
for i in range(1, args.num_iterations):
best_params, metrics_train, metrics_test = evaluate_bvqa_one_split(
i, X, y, args.log_short)
all_iterations.append(metrics_train + metrics_test)
# formatted print overall iterations
final_avg(all_iterations)
print('Overall {} secs lapsed..'.format(time.time() - t_overall_start))
# save figures
dir_path = os.path.dirname(args.out_file)
if not os.path.exists(dir_path):
os.makedirs(dir_path)
scipy.io.savemat(args.out_file,
mdict={'all_iterations': np.asarray(all_iterations,dtype=np.float)})
if __name__ == '__main__':
args = arg_parser()
log_file = args.log_file
log_dir = os.path.dirname(log_file)
if not os.path.exists(log_dir):
os.makedirs(log_dir)
sys.stdout = Logger(log_file)
print(args)
main(args)
'''
evaluate_biqa_features_ordinal_classification.py [-h] [--model_name MODEL_NAME] \
[--dataset_name DATASET_NAME] \
[--feature_file FEATURE_FILE] \
[--mos_file MOS_FILE] \
[--out_file OUT_FILE] \
[--color_only] [--log_short] \
[--use_parallel] \
[--num_iterations NUM_ITERATIONS] \
[--max_thread_count MAX_THREAD_COUNT
# regression task
python evaluate_biqa_features_ordinal_classification.py \
--model_name FRIQUEE \
--dataset_name KONIQ_10K \
--feature_file mos_feat_files/KONIQ_10K_FRIQUEE_feats.mat \
--mos_file mos_feat_files/KONIQ_10K_metadata.csv \
--out_file result/KONIQ_10K_FRIQUEE_SVC_corr.mat \
--log_file logs/logs.log
--use_parallel
'''