-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFocalLoss.py
34 lines (27 loc) · 1.14 KB
/
FocalLoss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import torch
import torch.nn as nn
class FocalLoss(nn.Module):
"""
Class definition for the Focal Loss. Extracted from the paper Focal Loss for Dense Object detection by FAIR.
"""
def __init__(self, focusing_param=1, balance_param=0.25):
super(FocalLoss, self).__init__()
self.focusing_param = focusing_param
self.balance_param = balance_param
self.cross_entropy = nn.CrossEntropyLoss(reduction="none")
def forward(self, output, target):
"""
Computes the focal loss for a classification problem (scene classification)
:param output: Output obtained by the network
:param target: Ground-truth labels
:return: Focal loss
"""
# Compute the regular cross entropy between the output and the target
logpt = - self.cross_entropy(output, target)
# Compute pt
pt = torch.exp(logpt)
# Compute focal loss
focal_loss = -((1 - pt) ** self.focusing_param) * logpt
# Apply weighting factor to obtain balanced focal loss
balanced_focal_loss = self.balance_param * focal_loss
return balanced_focal_loss