You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
PyTorch version: 2.3.0+cu121
Is debug build: False
CUDA used to build PyTorch: 12.1
ROCM used to build PyTorch: N/A
OS: Amazon Linux 2 (x86_64)
GCC version: (GCC) 7.3.1 20180712 (Red Hat 7.3.1-17)
Clang version: Could not collect
CMake version: version 3.29.5
Libc version: glibc-2.26
Python version: 3.10.14 | packaged by conda-forge | (main, Mar 20 2024, 12:45:18) [GCC 12.3.0] (64-bit runtime)
Python platform: Linux-5.10.217-205.860.amzn2.x86_64-x86_64-with-glibc2.26
Is CUDA available: True
CUDA runtime version: 12.1.105
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration:
GPU 0: NVIDIA A100-SXM4-40GB
GPU 1: NVIDIA A100-SXM4-40GB
GPU 2: NVIDIA A100-SXM4-40GB
GPU 3: NVIDIA A100-SXM4-40GB
GPU 4: NVIDIA A100-SXM4-40GB
GPU 5: NVIDIA A100-SXM4-40GB
GPU 6: NVIDIA A100-SXM4-40GB
GPU 7: NVIDIA A100-SXM4-40GB
Nvidia driver version: 535.183.01
cuDNN version: Could not collect
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 96
On-line CPU(s) list: 0-95
Thread(s) per core: 2
Core(s) per socket: 24
Socket(s): 2
NUMA node(s): 2
Vendor ID: GenuineIntel
CPU family: 6
Model: 85
Model name: Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz
Stepping: 7
CPU MHz: 3599.222
BogoMIPS: 5999.99
Hypervisor vendor: KVM
Virtualization type: full
L1d cache: 32K
L1i cache: 32K
L2 cache: 1024K
L3 cache: 36608K
NUMA node0 CPU(s): 0-23,48-71
NUMA node1 CPU(s): 24-47,72-95
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single pti fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves ida arat pku ospke
Versions of relevant libraries:
[pip3] numpy==1.26.4
[pip3] nvidia-nccl-cu12==2.20.5
[pip3] torch==2.3.0+cu121
[pip3] transformers==4.41.2
[pip3] triton==2.3.0
[conda] No relevant packages
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.5.0
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 GPU7 CPU Affinity NUMA Affinity GPU NUMA ID
GPU0 X NV12 NV12 NV12 NV12 NV12 NV12 NV12 0-23,48-71 0 N/A
GPU1 NV12 X NV12 NV12 NV12 NV12 NV12 NV12 0-23,48-71 0 N/A
GPU2 NV12 NV12 X NV12 NV12 NV12 NV12 NV12 0-23,48-71 0 N/A
GPU3 NV12 NV12 NV12 X NV12 NV12 NV12 NV12 0-23,48-71 0 N/A
GPU4 NV12 NV12 NV12 NV12 X NV12 NV12 NV12 24-47,72-95 1 N/A
GPU5 NV12 NV12 NV12 NV12 NV12 X NV12 NV12 24-47,72-95 1 N/A
GPU6 NV12 NV12 NV12 NV12 NV12 NV12 X NV12 24-47,72-95 1 N/A
GPU7 NV12 NV12 NV12 NV12 NV12 NV12 NV12 X 24-47,72-95 1 N/A
Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks
🐛 Describe the bug
ModelRegistry class:
classModelRegistry:
@staticmethoddefload_model_cls(model_arch: str) ->Optional[Type[nn.Module]]:
ifmodel_archin_OOT_MODELS:
return_OOT_MODELS[model_arch]
ifmodel_archnotin_MODELS:
returnNoneifis_hip():
ifmodel_archin_ROCM_UNSUPPORTED_MODELS:
raiseValueError(
f"Model architecture {model_arch} is not supported by ""ROCm for now.")
ifmodel_archin_ROCM_PARTIALLY_SUPPORTED_MODELS:
logger.warning(
"Model architecture %s is partially supported by ROCm: %s",
model_arch, _ROCM_PARTIALLY_SUPPORTED_MODELS[model_arch])
module_name, model_cls_name=_MODELS[model_arch]
module=importlib.import_module(
f"vllm.model_executor.models.{module_name}")
returngetattr(module, model_cls_name, None)
@staticmethoddefget_supported_archs() ->List[str]:
returnlist(_MODELS.keys())
@staticmethoddefregister_model(model_arch: str, model_cls: Type[nn.Module]):
ifmodel_archin_MODELS:
logger.warning(
"Model architecture %s is already registered, and will be ""overwritten by the new model class %s.", model_arch,
model_cls.__name__)
global_OOT_MODELS_OOT_MODELS[model_arch] =model_cls@staticmethoddefis_embedding_model(model_arch: str) ->bool:
returnmodel_archin_EMBEDDING_MODELS
since the get_supported_archs method doesn't include the OOT models, the model loader fails to load OOT models when using the LLM engine.
The text was updated successfully, but these errors were encountered:
Your current environment
🐛 Describe the bug
ModelRegistry class:
since the
get_supported_archs
method doesn't include the OOT models, the model loader fails to load OOT models when using the LLM engine.The text was updated successfully, but these errors were encountered: