Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Bug]: Running llama2-7b on H20, Floating point exception (core dumped) appears on float16 #4392

Open
yk1012664593 opened this issue Apr 26, 2024 · 21 comments
Labels
bug Something isn't working

Comments

@yk1012664593
Copy link

Your current environment

PyTorch version: 2.2.1+cu121
Is debug build: False
CUDA used to build PyTorch: 12.1
ROCM used to build PyTorch: N/A

OS: Ubuntu 22.04.4 LTS (x86_64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version: Could not collect
CMake version: version 3.29.2
Libc version: glibc-2.35

Python version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)
Python platform: Linux-5.4.0-106-generic-x86_64-with-glibc2.35
Is CUDA available: True
CUDA runtime version: 12.4.131
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration:
GPU 0: NVIDIA H20
GPU 1: NVIDIA H20
GPU 2: NVIDIA H20
GPU 3: NVIDIA H20
GPU 4: NVIDIA H20
GPU 5: NVIDIA H20
GPU 6: NVIDIA H20
GPU 7: NVIDIA H20

Nvidia driver version: 550.54.15
cuDNN version: Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.9.1.0
/usr/lib/x86_64-linux-gnu/libcudnn_adv.so.9.1.0
/usr/lib/x86_64-linux-gnu/libcudnn_cnn.so.9.1.0
/usr/lib/x86_64-linux-gnu/libcudnn_engines_precompiled.so.9.1.0
/usr/lib/x86_64-linux-gnu/libcudnn_engines_runtime_compiled.so.9.1.0
/usr/lib/x86_64-linux-gnu/libcudnn_graph.so.9.1.0
/usr/lib/x86_64-linux-gnu/libcudnn_heuristic.so.9.1.0
/usr/lib/x86_64-linux-gnu/libcudnn_ops.so.9.1.0
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 52 bits physical, 57 bits virtual
Byte Order: Little Endian
CPU(s): 192
On-line CPU(s) list: 0-191
Vendor ID: GenuineIntel
Model name: Intel(R) Xeon(R) Platinum 8469C
CPU family: 6
Model: 143
Thread(s) per core: 2
Core(s) per socket: 48
Socket(s): 2
Stepping: 8
CPU max MHz: 3800.0000
CPU min MHz: 800.0000
BogoMIPS: 5200.00
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cat_l2 cdp_l3 invpcid_single cdp_l2 ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local avx512_bf16 wbnoinvd dtherm ida arat pln pts hwp hwp_notify hwp_act_window hwp_epp hwp_pkg_req avx512vbmi umip pku ospke waitpkg avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg tme avx512_vpopcntdq rdpid cldemote movdiri movdir64b md_clear pconfig flush_l1d arch_capabilities
Virtualization: VT-x
L1d cache: 4.5 MiB (96 instances)
L1i cache: 3 MiB (96 instances)
L2 cache: 192 MiB (96 instances)
L3 cache: 195 MiB (2 instances)
NUMA node(s): 2
NUMA node0 CPU(s): 0-47,96-143
NUMA node1 CPU(s): 48-95,144-191
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Enhanced IBRS, IBPB conditional, RSB filling
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected

Versions of relevant libraries:
[pip3] numpy==1.26.4
[pip3] nvidia-nccl-cu12==2.19.3
[pip3] torch==2.2.1
[pip3] triton==2.2.0
[pip3] vllm-nccl-cu12==2.18.1.0.4.0
[conda] Could not collectROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.4.1
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 GPU7 CPU Affinity NUMA Affinity GPU NUMA ID
GPU0 X NV18 NV18 NV18 NV18 NV18 NV18 NV18 0-47,96-143 0 N/A
GPU1 NV18 X NV18 NV18 NV18 NV18 NV18 NV18 0-47,96-143 0 N/A
GPU2 NV18 NV18 X NV18 NV18 NV18 NV18 NV18 0-47,96-143 0 N/A
GPU3 NV18 NV18 NV18 X NV18 NV18 NV18 NV18 0-47,96-143 0 N/A
GPU4 NV18 NV18 NV18 NV18 X NV18 NV18 NV18 48-95,144-191 1 N/A
GPU5 NV18 NV18 NV18 NV18 NV18 X NV18 NV18 48-95,144-191 1 N/A
GPU6 NV18 NV18 NV18 NV18 NV18 NV18 X NV18 48-95,144-191 1 N/A
GPU7 NV18 NV18 NV18 NV18 NV18 NV18 NV18 X 48-95,144-191 1 N/A

Legend:

X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks

🐛 Describe the bug

Running llama2-7b on H20, vllm0.4.1, Floating point exception (core dumped) with float16 accuracy, float32 accuracy can be executed normally
The error screenshot is as follows

@yk1012664593 yk1012664593 added the bug Something isn't working label Apr 26, 2024
@yk1012664593
Copy link
Author

llama model init start
INFO 04-26 17:03:13 llm_engine.py:98] Initializing an LLM engine (v0.4.1) with config: model='/mnt/deep_learning_test/testsuite/dataset/llms_inference_llama7b-v2_accelerate/checkpoint/7B-V2/', speculative_config=None, tokenizer='/mnt/deep_learning_test/testsuite/dataset/llms_inference_llama7b-v2_accelerate/checkpoint/7B-V2/', skip_tokenizer_init=False, tokenizer_mode=auto, revision=None, tokenizer_revision=None, trust_remote_code=True, dtype=torch.float16, max_seq_len=4096, download_dir=None, load_format=LoadFormat.AUTO, tensor_parallel_size=1, disable_custom_all_reduce=Falsequantization=None, enforce_eager=False, kv_cache_dtype=auto, quantization_param_path=None, device_config=cuda, decoding_config=DecodingConfig(guided_decoding_backend='outlines'), seed=0)
INFO 04-26 17:03:13 utils.py:613] Found nccl from library /root/.config/vllm/nccl/cu12/libnccl.so.2.18.1
INFO 04-26 17:03:16 selector.py:77] Cannot use FlashAttention-2 backend because the flash_attn package is not found. Please install it for better performance.
INFO 04-26 17:03:16 selector.py:33] Using XFormers backend.
INFO 04-26 17:03:25 model_runner.py:173] Loading model weights took 12.5523 GB
INFO 04-26 17:03:25 gpu_executor.py:119] # GPU blocks: 9217, # CPU blocks: 512
INFO 04-26 17:03:26 model_runner.py:977] Capturing the model for CUDA graphs. This may lead to unexpected consequences if the model is not static. To run the model in eager mode, set 'enforce_eager=True' or use '--enforce-eager' in the CLI.
INFO 04-26 17:03:26 model_runner.py:981] CUDA graphs can take additional 1~3 GiB memory per GPU. If you are running out of memory, consider decreasing gpu_memory_utilization or enforcing eager mode. You can also reduce the max_num_seqs as needed to decrease memory usage.
Floating point exception (core dumped)

@youkaichao
Copy link
Member

Does it occur everytime? Or only for certain prompt?

In addition:

If you experienced crashes or hangs, it would be helpful to run vllm with export VLLM_TRACE_FUNCTION=1 . All the function calls in vllm will be recorded. Inspect these log files, and tell which function crashes or hangs.

@yk1012664593
Copy link
Author

它每次都会发生吗?还是只针对某些提示?

另外:

如果您遇到崩溃或挂起,使用 .vllm 中的所有函数调用都将被记录下来。检查这些日志文件,并判断哪个函数崩溃或挂起。export VLLM_TRACE_FUNCTION=1

Yes, this issue is inevitable. On the H20 model, all vllm versions with float16 accuracy will experience this error

@pipecat
Copy link

pipecat commented Apr 29, 2024

Met the same bug, and it's useful to add --enforce-eager to avoid it.

Additionally, some models (for example facebook/opt-125m) with float16 won't meet this bug.

@ElvisWai
Copy link

Met the same bug with Qwen1.5-14B-Chat on the H20, and I was able to solve it with float32. But using float16 and add --enforce-eager does not solve the problem.

@tianbiai
Copy link

Met the same bug with almost all LLM on the H20, but --enforce-eager does not solve the problem.

@chk4991
Copy link

chk4991 commented May 19, 2024

After testing, the --enforce-eager parameter does not work, but setting dtype to float32 works. However, this means that the quantized model cannot be deployed on h20.

@caddfa31434
Copy link

Try to build vllm from source using the nvcr.io/nvidia/pytorch:24.04-py3 container to avoid the bug related to cuBLAS on specific shapes (on H20).

@mir-of
Copy link

mir-of commented Jun 1, 2024

I am using nvcr.io/nvidia/pytorch:23.10-py3,it's all right when I use the float32 and float16, but floating point exception when I use bfloat16.
I tried:

  • build vllm from source using the nvcr.io/nvidia/pytorch:24.04-py3 container on H20 (still , float16 good, bfloat16 floating point exception)
  • nvcr.io/nvidia/pytorch:23.10-py3 on H800 (all good)

@Harryking1999
Copy link

Met the same bug with Qwen1.5-14B-Chat on the H20, and I was able to solve it with float32. But using float16 and add --enforce-eager does not solve the problem.

How can I use float32 with vllm?

@TobyYang7
Copy link

I met the same bug recently on H20. My torch version is: 2.3.1+cu121
You need to check your conda list | grep cublas first. Ensure there is only one cublas and that the version is greater than 12.3, then run pip install nvidia-cublas-cu12==12.4.5.8.
It works for me.

@finger92
Copy link

finger92 commented Jul 23, 2024

for me, both bfloat16 and float16 failed but float32 works

btw @TobyYang7 's solution works

@zjjott
Copy link

zjjott commented Sep 26, 2024

pip install nvidia-cublas-cu12 -U
export LD_LIBRARY_PATH=/opt/conda/lib/python3.8/site-packages/nvidia/cublas/lib/

can solve it
LD_LIBRARY_PATH should be cublas path

@Single430
Copy link

I met the same bug recently on H20. My torch version is: 2.3.1+cu121 You need to check your first. Ensure there is only one and that the version is greater than 12.3, then run . It works for me.conda list | grep cublas``cublas``pip install nvidia-cublas-cu12==12.4.5.8

非常感谢,我解决了此问题!

@zhangyike
Copy link

I met the same bug recently on H20. My torch version is: 2.3.1+cu121 You need to check your conda list | grep cublas first. Ensure there is only one cublas and that the version is greater than 12.3, then run pip install nvidia-cublas-cu12==12.4.5.8. It works for me.

hi, I met the following problem with this method:
The conflict is caused by:
The user requested nvidia-cublas-cu12>=12.4.5.8
torch 2.4.1 depends on nvidia-cublas-cu12==12.1.3.1; platform_system == "Linux" and platform_machine == "x86_64"
The user requested nvidia-cublas-cu12>=12.4.5.8
torch 2.4.0 depends on nvidia-cublas-cu12==12.1.3.1; platform_system == "Linux" and platform_machine == "x86_64"
The user requested nvidia-cublas-cu12>=12.4.5.8
torch 2.3.1 depends on nvidia-cublas-cu12==12.1.3.1; platform_system == "Linux" and platform_machine == "x86_64"
Do you have any advice?

@FreeButUselessSoul
Copy link

I met the same bug recently on H20. My torch version is: 2.3.1+cu121 You need to check your conda list | grep cublas first. Ensure there is only one cublas and that the version is greater than 12.3, then run pip install nvidia-cublas-cu12==12.4.5.8. It works for me.

hi, I met the following problem with this method: The conflict is caused by: The user requested nvidia-cublas-cu12>=12.4.5.8 torch 2.4.1 depends on nvidia-cublas-cu12==12.1.3.1; platform_system == "Linux" and platform_machine == "x86_64" The user requested nvidia-cublas-cu12>=12.4.5.8 torch 2.4.0 depends on nvidia-cublas-cu12==12.1.3.1; platform_system == "Linux" and platform_machine == "x86_64" The user requested nvidia-cublas-cu12>=12.4.5.8 torch 2.3.1 depends on nvidia-cublas-cu12==12.1.3.1; platform_system == "Linux" and platform_machine == "x86_64" Do you have any advice?

Simply ignore that warning. The program runs just fine :)

@zhangyike
Copy link

export LD_LIBRARY_PATH=/opt/conda/lib/python3.8/site-packages/nvidia/cublas/lib/

It works for me, thx!

@zijianchen98
Copy link

pip install nvidia-cublas-cu12==12.4.5.8
Thanks, this works for me

@Boyangs3
Copy link

I met the same bug recently on H20. My torch version is: 2.3.1+cu121 You need to check your conda list | grep cublas first. Ensure there is only one cublas and that the version is greater than 12.3, then run pip install nvidia-cublas-cu12==12.4.5.8. It works for me.

Thank you very much! It works for my env.

@RayTang88
Copy link

pip install nvidia-cublas-cu12 -U
export LD_LIBRARY_PATH=/opt/conda/lib/python3.8/site-packages/nvidia/cublas/lib/

can solve it LD_LIBRARY_PATH should be cublas path

Thanks,this work for me!

@jingyu198
Copy link

pip install nvidia-cublas-cu12 -U
export LD_LIBRARY_PATH=/opt/conda/lib/python3.8/site-packages/nvidia/cublas/lib/

can solve it LD_LIBRARY_PATH should be cublas path

that works for me!!!! thanks!!

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
bug Something isn't working
Projects
None yet
Development

No branches or pull requests