-
-
Notifications
You must be signed in to change notification settings - Fork 6k
/
Copy pathtest_long_context.py
295 lines (251 loc) · 11.6 KB
/
test_long_context.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
import ast
from typing import List, Optional, Tuple
import numpy as np
import pytest
import vllm
from vllm import SamplingParams
from vllm.lora.layers import LinearScalingRotaryEmbeddingWithLora
from vllm.lora.request import LoRARequest
from vllm.model_executor.layers.rotary_embedding import (
LinearScalingRotaryEmbedding)
from .data.long_context_test_data import prompts_and_responses
context_len_to_scaling_factor = {
"16k": 4,
"32k": 8,
}
# We use the same sampling params for all requests
sampling_params = SamplingParams(
temperature=0,
max_tokens=100,
)
def _create_lora_request(lora_id, long_context_infos):
context_len = long_context_infos[lora_id]["context_length"]
scaling_factor = context_len_to_scaling_factor[context_len]
return LoRARequest(context_len, lora_id,
long_context_infos[lora_id]["lora"],
4096 * scaling_factor)
def evaluate_json_response(model_response, golden_response):
"""Evaluates the model response against the golden response.
Returns a score between 0 and 1, where 1 is a perfect match and 0 is no
match. The score quantifies how well the model is able to extract the
golden JSON from the long context.
"""
try:
model_response = ast.literal_eval(model_response)
except Exception as e:
raise ValueError(
f"Model response is not a valid JSON. Expected {golden_response}, "
f"got {model_response}") from e
# Normally, we would flatten the dictionary and compare the values, but in
# this case, we know that the dictionary is only 2 levels deep
positive_values = 0
total_values = 0
# We look at all the attributes of the person that we are extracting a
# biography of and copmare them to the golden response
for person_attribute, person_attribute_value in golden_response.items():
if person_attribute in model_response:
if isinstance(person_attribute_value, dict):
for (sub_attribute,
sub_attribute_value) in person_attribute_value.items():
total_values += 1
if sub_attribute in model_response[
person_attribute] and model_response[
person_attribute][
sub_attribute] == sub_attribute_value:
positive_values += 1
else:
total_values += 1
if model_response[person_attribute] == person_attribute_value:
positive_values += 1
else:
# We count a missing sub-dict as a single missed value.
total_values += 1
# Return a score between 0 and 1
return positive_values / total_values
def generate(
llm: vllm.LLM,
inputs: Tuple[str, SamplingParams, Optional[LoRARequest]],
):
prompts, sampling_param, lora_request = inputs
outputs = llm.generate(prompts, sampling_param, lora_request=lora_request)
return outputs[0].outputs[0].text.strip()
def batched_generate(
llm: vllm.LLM,
inputs: List[Tuple[str, SamplingParams, Optional[LoRARequest]]],
):
for input in inputs:
prompt, sampling_param, lora_req = input
# Add requests to the engine and run the engine
llm._validate_and_add_requests(prompt,
sampling_param,
lora_request=lora_req,
prompt_adapter_request=None)
outputs = llm._run_engine(use_tqdm=True)
return [outputs[i].outputs[0].text.strip() for i in range(len(outputs))]
@pytest.fixture(scope="module")
def lora_llm(long_context_infos):
scaling_factors = [
context_len_to_scaling_factor[info["context_length"]]
for info in long_context_infos.values()
]
llm = vllm.LLM("meta-llama/Llama-2-13b-chat-hf",
enable_lora=True,
max_num_seqs=16,
max_loras=2,
long_lora_scaling_factors=tuple(scaling_factors),
max_num_batched_tokens=4096 * 8,
tensor_parallel_size=4,
distributed_executor_backend="mp")
yield llm
del llm
def test_rotary_emb_replaced(dist_init):
"""Verify rotary emb in all the layers are replaced"""
from vllm.engine.arg_utils import EngineArgs
from vllm.worker.model_runner import ModelRunner
engine_args = EngineArgs("meta-llama/Llama-2-7b-hf",
long_lora_scaling_factors=(4.0, ),
enable_lora=True)
engine_config = engine_args.create_engine_config()
model_runner = ModelRunner(
model_config=engine_config.model_config,
parallel_config=engine_config.parallel_config,
scheduler_config=engine_config.scheduler_config,
device_config=engine_config.device_config,
cache_config=engine_config.cache_config,
load_config=engine_config.load_config,
lora_config=engine_config.lora_config,
is_driver_worker=True,
)
model_runner.load_model()
rotary_emb_count = 0
for module_name, module in model_runner.model.named_modules(
remove_duplicate=False):
if "rotary_emb" in module_name:
if "base_layer" not in module_name:
rotary_emb_count += 1
assert isinstance(module, LinearScalingRotaryEmbeddingWithLora)
else:
assert isinstance(module, LinearScalingRotaryEmbedding)
# Llama 2 has 32 layers.
assert rotary_emb_count == 32
@pytest.mark.skip_global_cleanup
def test_batched_rope_kernel(lora_llm, long_context_infos):
"""We test the batched kernel by comparing the results of batched an
non-batched generation.
"""
# Create non batched results first to compare against batched results
non_batched_results: List[str] = []
for lora_id, info in long_context_infos.items():
context_len = info["context_length"]
lora_prompt = (prompts_and_responses[context_len][0]["prompt"],
sampling_params,
_create_lora_request(lora_id, long_context_infos))
lora_output = generate(lora_llm, lora_prompt)
non_batched_results.append(lora_output)
# Create batched results
# Each element of the batch must be
# (prompt, prompt_sampling_params, prompt_lora_request)
batched_prompts: List[Tuple[str, SamplingParams,
Optional[LoRARequest]]] = []
for lora_id, info in long_context_infos.items():
context_len = info["context_length"]
batched_prompts.extend([
(prompts_and_responses[context_len][0]["prompt"], sampling_params,
_create_lora_request(lora_id, long_context_infos))
])
batched_results = batched_generate(lora_llm, batched_prompts)
# Results should be the same
for non_batched, batched in zip(non_batched_results, batched_results):
assert non_batched == batched, (
"Non batched and batched results should be the "
f"same:\n{batched}\n{non_batched}")
@pytest.mark.skip_global_cleanup
def test_self_consistency(lora_llm, long_context_infos):
"""We test consistency of the batched kernel by permuting batched
inputs and comparing the results to the non-permuted batched results.
"""
num_loras = len(long_context_infos)
# Create results in order of long_context_infos
batched_prompts: List[Tuple[str, SamplingParams,
Optional[LoRARequest]]] = []
for lora_id, info in long_context_infos.items():
context_len = info["context_length"]
batched_prompts.extend([
(prompts_and_responses[context_len][0]["prompt"], sampling_params,
_create_lora_request(lora_id, long_context_infos))
])
batched_results = batched_generate(lora_llm, batched_prompts)
permutation = np.random.default_rng(seed=42).permutation(num_loras)
# Create results in random order of permutation
batched_prompts = []
for i in permutation:
lora_id, info = list(long_context_infos.items())[i]
context_len = info["context_length"]
batched_prompts.extend([
(prompts_and_responses[context_len][0]["prompt"], sampling_params,
_create_lora_request(lora_id, long_context_infos))
])
permutated_batched_results = batched_generate(lora_llm, batched_prompts)
# Results should be the same
for i in range(num_loras):
assert batched_results[i] == permutated_batched_results[
permutation[i]], (
f"Results should be the same:\n{batched_results[i]}"
f"\n{permutated_batched_results[permutation[i]]}")
@pytest.mark.skip_global_cleanup
def test_quality(lora_llm, long_context_infos):
"""We test the quality of the answers given by the LoRA model by
comparing the generated text to the merged model's outputs.
This is effectively a mini-benchmark over four prompts.
If this test fails, this indicates that the quality of the LoRA model
is suboptimal compared to the merged model. For example, if the model
does not output valid dictionaries, this test will fail.
If needed for testing, the merged versions of the models are available
as part of the `conftest`.
The test is expected to run for about 1 minute on a p4de.24xlarge
instance.
"""
scores: List[float] = []
for lora_id, info in long_context_infos.items():
context_len = info["context_length"]
for prompt_and_response in prompts_and_responses[context_len]:
lora_prompt = (prompt_and_response["prompt"], sampling_params,
_create_lora_request(lora_id, long_context_infos))
response = generate(lora_llm, lora_prompt)
golden_answer = prompt_and_response["golden_answer"]
score = evaluate_json_response(response, golden_answer)
scores.append(score)
assert score > 0.3, ("Quality of the answer is not good enough. "
f"Expected {golden_answer}, got {response}")
assert np.mean(scores) > 0.5
@pytest.mark.skip_global_cleanup
def test_max_len(lora_llm, long_context_infos):
"""Test that we raise an ValueError when the input of a given LoRA
model exceeds the maximum length."""
# Since each LoRA model has a different maximum length, we need to
# test each one separately
for lora_id, info in long_context_infos.items():
context_len = info["context_length"]
lora_request = _create_lora_request(lora_id, long_context_infos)
# Good prompt should be fine
good_prompt = prompts_and_responses[context_len][0]["prompt"]
generate(lora_llm, (good_prompt, sampling_params, lora_request))
# Bad prompt should raise an error
bad_prompt = good_prompt * 2
with pytest.raises(ValueError):
generate(lora_llm, (bad_prompt, sampling_params, lora_request))
# Also test batched
batched_prompts: List[Tuple[str, SamplingParams,
Optional[LoRARequest]]] = []
for lora_id_with_bad_inputs in long_context_infos:
for lora_id, info in long_context_infos.items():
context_len = info["context_length"]
batched_prompts.extend([
(prompts_and_responses[context_len][0]["prompt"] *
(2 if lora_id == lora_id_with_bad_inputs else 1),
sampling_params,
_create_lora_request(lora_id, long_context_infos))
])
# Turn good prompt into bad prompt inside of batched prompts
with pytest.raises(ValueError):
batched_generate(lora_llm, batched_prompts)