-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathclocks.py
executable file
·74 lines (62 loc) · 2.2 KB
/
clocks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
#!/usr/bin/env python
from itertools import product
import api
import numpy as np
import os
import scipy as sp
import scipy.stats
import sys
import time
# Customize these
card = 1 # Card number, 0 is the first
mem_min = 1250 # The memory clock to start at
mem_max = 1460 # The memory clock to end at
mem_step = 3 # The interval to try memory clocks at (1 = all, 2 = every other, etc.)
core_min = 830 # The core clock to start at
core_max = 890 # The core clock to end at
core_step = 1 # The interval to try core clocks
desired_accuracy_in_mhs = 0.002 # The desired accuracy of samples in megahashes per second. .002 or .001 is recommended here
# Probably don't customize these
csv='mhs.csv'
infinity = 1.0e24
clock_command = 'aticonfig --adapter=all --odsc=%i,%i >/dev/null' # Command to use to overclock the card.
sgminer = api.SGMiner()
def mean_confidence(data, confidence=0.95):
a = 1.0 * np.array(data)
n = len(a)
if n == 0:
print "not enough data"
return infinity
m, se = np.mean(a), scipy.stats.sem(a)
h = se * sp.stats.t._ppf((1+confidence)/2., n-1)
print "h: " + str(h)
return h
skip = []
try:
with open(csv, 'r') as output:
for mem, core, mhz in [_.split(',') for _ in output]:
if mem != "mem":
skip.append((int(mem),int(core)))
except IOError:
with open(csv, 'w') as output:
output.write('mem,core,mhs\n')
pass
with open(csv, 'a') as output:
for mem, core in product(
xrange(mem_min, mem_max+1, mem_step),
xrange(core_min, core_max+1, core_step)
):
if not (mem, core) in skip:
os.system(clock_command % (core,mem))
print 'adjusting clock to %i,%i' % (mem, core)
samples = []
time.sleep(10) # wait 15s for first sample, 5s else
while len(samples) < 3 or mean_confidence(samples) > desired_accuracy_in_mhs:
time.sleep(5)
sample = sgminer.devs()[card]['MHS 5s']
samples.extend([sample])
mhs = np.mean(np.array(samples))
output.write('%i,%i,%f\n' % (mem, core, mhs))
output.flush()
print '%i,%i,%f' % (mem, core, mhs)
sys.stdout.flush()