-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtest.py
140 lines (119 loc) · 5.56 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import cv2
import argparse
import os
import faulthandler
faulthandler.enable()
import torch
import torch.nn.functional as F
from snot.pipelines.pipeline_builder import build_pipeline
from snot.datasets import DatasetFactory, datapath
from denoiser.denoiser_builder import build_denoiser
from enhancer.enhancer_builder import build_enhancer
torch.set_num_threads(1)
parser = argparse.ArgumentParser(description='siamese tracking')
parser.add_argument('--dataset', default='UAVDark135', type=str,
help='datasets')
parser.add_argument('--datasetpath', default='', type=str,
help='the path of datasets')
parser.add_argument('--config', default='', type=str,
help='config file')
parser.add_argument('--snapshot', default='', type=str,
help='snapshot of models to eval')
parser.add_argument('--trackername', default='SiamRPN++', type=str,
help='name of tracker')
parser.add_argument('--e_weights', default='./checkponit/DCE/model.pth', type=str,
help='weights')
parser.add_argument('--enhancername', default='DCE', type=str,
help='name of enhancer')
parser.add_argument('--d_weights', default='./checkponit/CGD/model.pth', type=str,
help='weights')
parser.add_argument('--denoisername', default='CGD', type=str,
help='name of denoiser')
parser.add_argument('--seed', default='6666', type=str,
help='random seed')
parser.add_argument('--video', default='girl5', type=str,
help='eval one special video')
parser.add_argument('--vis', default=True, action='store_true',
help='whether visualzie result')
parser.add_argument('--save_fig', default=True, action='store_true',
help='whether save result as image')
args = parser.parse_args()
def main():
if args.seed:
seed = args.seed
torch.manual_seed(seed)
if args.enhancername.split('-')[0]:
enhancer = build_enhancer(args)
else:
enhancer = None
if args.denoisername.split('-')[0]:
denoiser = build_denoiser(args)
else:
denoiser = None
pipeline = build_pipeline(args, enhancer=enhancer, denoiser=denoiser)
for dataset_name in args.dataset.split(','):
# create dataset
try:
dataset_root = args.datasetpath + datapath[dataset_name]
except:
print('datasetpath?')
dataset = DatasetFactory.create_dataset(name=dataset_name,
dataset_root=dataset_root,
load_img=False)
model_name = args.trackername+args.enhancername+args.denoisername
# OPE tracking
IDX = 0
TOC = 0
model_path = os.path.join('result', dataset_name, model_name)
for v_idx, video in enumerate(dataset):
if args.video != '':
# test one special video
if video.name != args.video:
continue
toc = 0
pred_bboxes = []
for idx, (img, gt_bbox) in enumerate(video):
tic = cv2.getTickCount()
if idx == 0:
pred_bbox = pipeline.init(img, gt_bbox)
pred_bboxes.append(pred_bbox)
else:
pred_bbox = pipeline.track(img)
pred_bboxes.append(pred_bbox)
toc += cv2.getTickCount() - tic
if args.vis and idx > 0:
try:
gt_bbox = list(map(int, gt_bbox))
cv2.rectangle(img, (gt_bbox[0], gt_bbox[1]),
(gt_bbox[0]+gt_bbox[2], gt_bbox[1]+gt_bbox[3]), (0, 255, 0), 3)
except:
pass
pred_bbox = list(map(int, pred_bbox))
cv2.rectangle(img, (gt_bbox[0], gt_bbox[1]),
(gt_bbox[0]+gt_bbox[2], gt_bbox[1]+gt_bbox[3]), (0, 255, 0), 3)
cv2.rectangle(img, (pred_bbox[0], pred_bbox[1]),
(pred_bbox[0]+pred_bbox[2], pred_bbox[1]+pred_bbox[3]), (0, 255, 255), 3)
cv2.putText(img, str(idx), (40, 40), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 255), 2)
img_folder_path = os.path.join(model_path, "img", video.name)
if not os.path.exists(img_folder_path):
os.makedirs(img_folder_path)
img_path = os.path.join(img_folder_path, str(idx)+".png")
cv2.imwrite(img_path, img)
toc /= cv2.getTickFrequency()
# save results
if not os.path.isdir(model_path):
os.makedirs(model_path)
result_path = os.path.join(model_path, '{}.txt'.format(video.name))
with open(result_path, 'w') as f:
for x in pred_bboxes:
f.write(','.join([str(i) for i in x])+'\n')
print('({:3d}) Video: {:12s} Time: {:5.1f}s Speed: {:3.1f}fps'.format(v_idx+1, video.name, toc, idx / toc))
IDX += idx
TOC += toc
print('Total Time: {:5.1f}s Average Speed: {:3.1f}fps'.format(TOC, IDX / TOC))
if __name__ == '__main__':
main()