data
data.augment
data.collate
data.data_factory
data.dataset
data.transforms
eval
hp_optim
models
models.backbone_factory
models.byol
models.byol.model
models.mae
models.mae.lr_sched
models.mae.model
models.mae.pos_embed
models.model_factory
models.simclr
models.simclr.encoder
models.simclr.head
models.simclr.loss
models.simclr.model
pipeline
pipeline.callback_factory
pipeline.lightning
train
utils
utils.image
visualize
augment.Dilation
augment.Erosion
augment.GaussianNoise
augment.PairTransform
dataset.ICDARDataset
model.BYOL
model.EMA
model.NetWrapper
lr_sched.CustomScheduler
model.MAE
: Masked Autoencoder with VisionTransformer backboneencoder.ResNet50Encoder
head.ProjectionHead
loss.ContrastiveLoss
model.SimCLR
lightning.LightningPipeline
collate.collate_factory
: Custom collate function for each model.data_factory.data_factory
: Data loader factory based on dataset name.transforms.transform_factory
: Transform factory for self-supervised modelseval.execute
: Evaluation entry point.hp_optim.objective
: Objective function for Optuna.backbone_factory.backbone_factory
: Backbone factory for self-supervised modelsmodel.MLP
: Simple MLP with ReLU activation and batch normmodel.SimSiamMLP
: SimSiam MLP with ReLU activation and batch normmodel.default
model.flatten
model.get_module_device
model.loss_fn
: Negative cosine similarity loss as defined in the papermodel.set_requires_grad
model.singleton
: Singleton pattern decoratormodel.update_moving_average
pos_embed.get_1d_sincos_pos_embed_from_grid
: embed_dim: output dimension for each positionpos_embed.get_2d_sincos_pos_embed
: grid_size: int of the grid height and widthpos_embed.get_2d_sincos_pos_embed_from_grid
pos_embed.interpolate_pos_embed
model_factory.model_factory
: Model factory for self-supervised modelsencoder.test
loss.test
callback_factory.callback_factory
: Model callback factorytrain.execute
: Configuration based model training entry point.image.img_is_color
: Check if an image is color or grayscale.image.show_image_list
: Shows a grid of images, where each image is a Numpy array. The images can be eithervisualize.plot_features
: Plot embeddings. This is a wrapper around : func :tsne. TSNE
to make it easier to visualize the model's performance.