-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmodels.py
428 lines (302 loc) · 11.8 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
import numpy as np
import torch.nn as nn
import torch
import utils
def l2(*tensors):
return sum([tensor.pow(2).sum() for tensor in tensors])/2
def inner(a, b):
return (a * b).sum(dim=1)
class Recommender(nn.Module):
def create_param(self, *size):
w = nn.Parameter(torch.rand(*size))
if len(size) > 1:
nn.init.xavier_uniform_(w)
else:
nn.init.zeros_(w)
return w
def load(self, model_file):
self.load_state_dict(torch.load(model_file, map_location=utils.get_device()))
if torch.cuda.is_available():
self = self.cuda()
self.eval()
def score(self, u):
i = torch.LongTensor(range(self.n_items))
return -self.pointwise_forward(u, i, self.F)
def score_items_user(self, u):
i = torch.LongTensor(range(self.n_items))
return -self.pointwise_forward(u, i, self.F)
def score_users_item(self, users, i, fi=None):
return -self.pointwise_forward(users, [i], fi)
def score_user_item(self, u, i, fi=None):
return -self.pointwise_forward([u], [i], fi)
class VBPR(Recommender):
def __init__(self, n_users, n_items, F, k=10, k2=10, lambda_w=0.01, lambda_b=0.01, lambda_e=0.0):
super(VBPR, self).__init__()
self.n_users = n_users
self.n_items = n_items
self.F = F/60
self.k = k
self.k2 = k2
self.lambda_w = lambda_w
self.lambda_b = lambda_b
self.lambda_e = lambda_e
self.Bi = self.create_param(n_items)
self.Gu = self.create_param(n_users, k)
self.Gi = self.create_param(n_items, k)
self.Tu = self.create_param(n_users, k2)
self.E = self.create_param(F.shape[1], k2)
self.Bp = self.create_param(F.shape[1], 1)
def add_fake_user_by_item(self, i):
ti = (self.F[[i]] @ self.E).detach()
gi = self.Gi[[i]].detach()
self.Tu = nn.Parameter(torch.cat((self.Tu.detach(), ti)))
self.Gu = nn.Parameter(torch.cat((self.Gu.detach(), gi)))
self.n_users += 1
return self.n_users-1
def score_similar_items(self, i):
Ti = (self.F @ self.E).detach()
ti = Ti[[i]]
gi = self.Gi[[i]].detach()
scores = Ti @ ti.T + self.Gi @ gi.T
return scores.detach().squeeze()
def add_fake_user_by_items(self, items):
ti = (self.F[items] @ self.E).detach().mean(axis=0, keepdim=True)
gi = self.Gi[items].detach().mean(axis=0, keepdim=True)
self.Tu = nn.Parameter(torch.cat((self.Tu.detach(), ti)))
self.Gu = nn.Parameter(torch.cat((self.Gu.detach(), gi)))
self.n_users += 1
return self.n_users-1
def add_fake_user_by_other_and_add_items(self, u, user_items, items):
tu = self.Tu[[u]].detach()
gu = self.Gu[[u]].detach()
ti = (self.F[items] @ self.E).detach().sum(axis=0)
gi = self.Gi[items].detach().sum(axis=0)
n = len(user_items)
m = len(items)
tu = (n*tu+ti)/(n+m)
gu = (n*gu+gi)/(n+m)
self.Tu = nn.Parameter(torch.cat((self.Tu.detach(), tu)))
self.Gu = nn.Parameter(torch.cat((self.Gu.detach(), gu)))
self.n_users += 1
return self.n_users-1
def score_users(self, u):
gamma_u = self.Gu[u]
theta_u = self.Tu[u]
beta_i = self.Bi
gamma_i = self.Gi
feat_i = self.F
Xui = beta_i + \
gamma_u @ gamma_i.T + \
theta_u @ feat_i.mm(self.E).T + \
feat_i.mm(self.Bp).squeeze()
return Xui
def pointwise_forward(self, u, i, fi=None):
gamma_u = self.Gu[u]
theta_u = self.Tu[u]
beta_i = self.Bi[i]
gamma_i = self.Gi[i]
feat_i = self.F[i] if fi is None else fi
Xui = beta_i + \
inner(gamma_u, gamma_i) + \
inner(theta_u, feat_i.mm(self.E)) + \
feat_i.mm(self.Bp).squeeze()
return -Xui
def forward(self, u, i, j, fi=None, fj=None):
gamma_u = self.Gu[u]
theta_u = self.Tu[u]
beta_i = self.Bi[i]
gamma_i = self.Gi[i]
feat_i = self.F[i] if fi is None else fi
beta_j = self.Bi[j]
gamma_j = self.Gi[j]
feat_j = self.F[j] if fj is None else fj
gamma_diff = gamma_i - gamma_j
feat_diff = feat_i - feat_j
Xuij = beta_i - beta_j + \
inner(gamma_u, gamma_diff) + \
inner(theta_u, feat_diff.mm(self.E)) + \
feat_diff.mm(self.Bp).squeeze()
log_likelihood = nn.functional.logsigmoid(Xuij).sum()
reg = l2(gamma_u, gamma_i, gamma_j, theta_u) * self.lambda_w + \
l2(beta_i, beta_j) * self.lambda_b + \
l2(self.E, self.Bp) * self.lambda_e
loss = -log_likelihood + reg
auc = (Xuij > 0).float().sum()
return loss, auc
class VBPRC(Recommender):
def __init__(
self, n_users, n_items, n_categories, F, IC,
k, k2, lambda_w=0.01, lambda_b=0.01, lambda_e=0.0):
super(VBPRC, self).__init__()
self.n_users = n_users
self.n_items = n_items
self.n_categories = n_categories
self.F = F/60
self.IC = torch.LongTensor(IC)
self.k = k
self.k2 = k2
self.lambda_w = lambda_w
self.lambda_b = lambda_b
self.lambda_e = lambda_e
self.Bi = self.create_param(n_items)
self.Gu = self.create_param(n_users, k)
self.Gi = self.create_param(n_items, k)
self.Tu = self.create_param(n_users, k2)
self.Ic = self.create_param(n_categories, k2)
self.E = self.create_param(F.shape[1], k2)
self.Bp = self.create_param(F.shape[1], 1)
def pointwise_forward(self, u, i, fi=None):
gamma_u = self.Gu[u]
theta_u = self.Tu[u]
ci = self.IC[i]
beta_i = self.Bi[i]
gamma_i = self.Gi[i]
cf_i = self.Ic[ci]
feat_i = self.F[i] if fi is None else fi
Xui = beta_i + \
inner(gamma_u, gamma_i) + \
inner(theta_u, feat_i.mm(self.E) - cf_i) + \
feat_i.mm(self.Bp).squeeze()
return -Xui
def forward(self, u, i, j, fi=None, fj=None):
gamma_u = self.Gu[u]
theta_u = self.Tu[u]
ci = self.IC[i]
cj = self.IC[j]
beta_i = self.Bi[i]
gamma_i = self.Gi[i]
cf_i = self.Ic[ci]
feat_i = self.F[i] if fi is None else fi
beta_j = self.Bi[j]
gamma_j = self.Gi[j]
cf_j = self.Ic[cj]
feat_j = self.F[j] if fj is None else fj
gamma_diff = gamma_i - gamma_j
feat_diff = feat_i - feat_j
cf_diff = cf_i - cf_j
Xuij = beta_i - beta_j + \
inner(gamma_u, gamma_diff) + \
inner(theta_u, feat_diff.mm(self.E) - cf_diff) + \
feat_diff.mm(self.Bp).squeeze()
log_likelihood = nn.functional.logsigmoid(Xuij).sum()
reg = l2(gamma_u, gamma_i, gamma_j, theta_u) * self.lambda_w + \
l2(beta_i, beta_j) * self.lambda_b + \
l2(self.E, self.Bp, cf_i, cf_j) * self.lambda_e
loss = -log_likelihood + reg
auc = (Xuij > 0).float().sum()
return loss, auc
class DeepStyle(Recommender):
def __init__(
self, n_users, n_items, n_categories, F, IC, k=10, lambda_w=0.01, lambda_e=0.01):
super(DeepStyle, self).__init__()
self.n_users = n_users
self.n_items = n_items
self.n_categories = n_categories
self.F = F/60
self.IC = torch.LongTensor(IC)
self.k = k
self.lambda_w = lambda_w
self.lambda_e = lambda_e
self.Pu = self.create_param(n_users, k)
self.Qi = self.create_param(n_items, k)
self.Bi = self.create_param(n_items)
self.E = self.create_param(F.shape[1], k)
self.Bp = self.create_param(F.shape[1], 1)
self.Ic = self.create_param(n_categories, k)
self.Bc = self.create_param(n_categories)
def pointwise_forward(self, u, i, vi=None):
ci = self.IC[i]
if vi is None: vi = self.F[i]
pu = self.Pu[u]
qi = self.Qi[i]
bi = self.Bi[i]
ii = self.Ic[ci]
bic = self.Bc[ci]
Yui = bi + bic + inner(pu, vi.mm(self.E)+qi-ii) + vi.mm(self.Bp).squeeze()
return -Yui
def forward(self, u, i, j, vi=None, vj=None):
if vi is None: vi = self.F[i]
if vj is None: vj = self.F[j]
ci = self.IC[i]
cj = self.IC[j]
pu = self.Pu[u]
qi, qj = self.Qi[i], self.Qi[j]
bi, bj = self.Bi[i], self.Bi[j]
ii, ij = self.Ic[ci], self.Ic[cj]
bic, bjc = self.Bc[ci], self.Bc[cj]
dv, dq, di = (vi - vj), (qi - qj), (ii - ij)
Yuij = (bi - bj) + (bic - bjc) + inner(pu, dv.mm(self.E)+dq-di) + dv.mm(self.Bp).squeeze()
log_likelihood_eq = -(1+torch.exp(-Yuij)).log().sum()
# log_likelihood = nn.functional.logsigmoid(Yuij).sum()
reg = l2(pu, qi, qj, ii, ij) * self.lambda_w + \
l2(bi, bj, bic, bjc) * self.lambda_w + \
l2(self.E, self.Bp) * self.lambda_e
loss = -log_likelihood_eq + reg
auc = (Yuij > 0).float().sum()
return loss, auc
class BPR(Recommender):
def __init__(self, n_users, n_items, k=10, lambda_w=0.01, lambda_b=0.01):
super(BPR, self).__init__()
self.n_users = n_users
self.n_items = n_items
self.k = k
self.lambda_w = lambda_w
self.lambda_b = lambda_b
self.Bi = self.create_param(n_items)
self.Gu = self.create_param(n_users, k)
self.Gi = self.create_param(n_items, k)
def pointwise_forward(self, u, i):
gamma_u = self.Gu[u]
beta_i = self.Bi[i]
gamma_i = self.Gi[i]
Xui = beta_i + inner(gamma_u, gamma_i)
return -Xui
def forward(self, u, i, j):
gamma_u = self.Gu[u]
beta_i = self.Bi[i]
gamma_i = self.Gi[i]
beta_j = self.Bi[j]
gamma_j = self.Gi[j]
gamma_diff = gamma_i - gamma_j
Xuij = beta_i - beta_j + inner(gamma_u, gamma_diff)
log_likelihood = nn.functional.logsigmoid(Xuij).sum()
reg = l2(gamma_u, gamma_i, gamma_j) * self.lambda_w + \
l2(beta_i, beta_j) * self.lambda_b
loss = -log_likelihood + reg
auc = (Xuij > 0).float().sum()
return loss, auc
from torchvision import transforms, models
class ImageModel:
def __init__(self, architecture, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]):
self.transforms = transforms.Compose([
# transforms.Resize((224, 224)),
# transforms.Resize(224),
# transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=mean, std=std)])
if architecture == "vgg16":
model = models.vgg16(pretrained=True)
model.classifier = nn.Sequential(*list(model.classifier.children())[:-3])
self.image_feat_size = 4096
elif architecture == "resnet50":
self.image_feat_size = 2048
class Squeeze(nn.Module):
def forward(self, x):
return x.view(-1, 2048)
model = models.resnet50(pretrained=True)
modules = list(model.children())[:-1] + [Squeeze()]
model = nn.Sequential(*modules)
for p in model.parameters():
p.requires_grad = False
model.eval()
if torch.cuda.is_available():
model = model.cuda()
self.model = model
self.architecture = architecture
def get_features(self, imgs):
return self.model(imgs)
def transform(self, img):
return self.transforms(img)
@property
def Dim(self):
return 4096 if self.architecture == "vgg16" else 2048