-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathevaluate.py
43 lines (31 loc) · 1.42 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
from argparse import ArgumentParser
from train import Trainer
from dataset import RecSysDataset
from models import VBPR, VBPRC, DeepStyle, BPR
if __name__ == '__main__':
parser = ArgumentParser(description="Experiments")
parser.add_argument('--k', type=int, default=10)
parser.add_argument('--k2', type=int, default=10)
parser.add_argument('--algorithm', type=str, default='deepstyle') # bpr, vbpr, vbprc, deepstyle
parser.add_argument('--dataset', type=str, default='Electronics')
args = parser.parse_args()
print(args)
dataset = RecSysDataset(args.dataset)
if args.algorithm == "vbpr":
model = VBPR(
dataset.n_users, dataset.n_items, dataset.corpus.image_features,
args.k, args.k2)
elif args.algorithm == "vbprc":
model = VBPRC(
dataset.n_users, dataset.n_items, dataset.n_categories,
dataset.corpus.image_features, dataset.corpus.item_category,
args.k, args.k2)
elif args.algorithm == "deepstyle":
model = DeepStyle(
dataset.n_users, dataset.n_items, dataset.n_categories,
dataset.corpus.image_features, dataset.corpus.item_category, args.k)
elif args.algorithm == "bpr":
model = BPR(dataset.n_users, dataset.n_items, args.k)
model.load(f'../data/dataset/{args.dataset}/models/{args.algorithm}_resnet50.pth')
tr = Trainer(model, dataset)
print(tr.evaluate())