-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathProj-FMA.nb
7247 lines (7177 loc) · 392 KB
/
Proj-FMA.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 13.0' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 401260, 7239]
NotebookOptionsPosition[ 396145, 7151]
NotebookOutlinePosition[ 396540, 7167]
CellTagsIndexPosition[ 396497, 7164]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell["Finite Square Well", "Section",
CellChangeTimes->{{3.8796844775796328`*^9,
3.879684480695063*^9}},ExpressionUUID->"27cb0646-efec-48cc-9487-\
70257ac1dfff"],
Cell["\<\
Use o livro \[OpenCurlyDoubleQuote]A physicist\[CloseCurlyQuote]s guide to \
Mathematica\[CloseCurlyDoubleQuote], do Patrick Tam, se\[CCedilla]\[ATilde]o \
6.4.3. O m\[EAcute]todo anal\[IAcute]tico de solu\[CCedilla]\[ATilde]o foi \
empregado aqui. O primeiro objetivo foi avaliar o ground state.\
\>", "Text",
CellChangeTimes->{{3.879687875028317*^9, 3.879687876376786*^9}, {
3.879688378273452*^9,
3.879688450048757*^9}},ExpressionUUID->"04a60e0c-7d5a-43dd-8ccb-\
2c4a492bbc11"],
Cell[BoxData[
RowBox[{"ClearAll", "[", "\"\<Global`*\>\"", "]"}]], "Input",
CellChangeTimes->{{3.879685860732809*^9, 3.879685943036104*^9}},
CellLabel->
"In[139]:=",ExpressionUUID->"8b636d3d-94bd-4389-8fd2-fd786d8c9900"],
Cell[BoxData[
RowBox[{
RowBox[{"\[Lambda]", "=", "16"}], ";"}]], "Input",
CellChangeTimes->{{3.879686456089592*^9, 3.8796864605889597`*^9}, {
3.8796885097150383`*^9, 3.8796885105924597`*^9}, {3.8796885460514183`*^9,
3.879688567968205*^9}},
CellLabel->
"In[260]:=",ExpressionUUID->"cf46fbc8-0051-47ca-a3aa-2d5eb19c2cfb"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"ClickPane", "[",
RowBox[{
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"Sqrt", "[",
RowBox[{"\[Lambda]", "-",
RowBox[{"y", "^", "2"}]}], "]"}], "/", "y"}], ",",
RowBox[{"Tan", "[", "y", "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"y", ",", "0", ",", "10"}], "}"}]}], "]"}], ",",
RowBox[{
RowBox[{"{",
RowBox[{"yzcoord", "=", "#"}], "}"}], " ", "&"}]}], "]"}]], "Input",
CellChangeTimes->{{3.879686348414138*^9, 3.879686354420889*^9}, {
3.87968640653994*^9, 3.8796864435373793`*^9}, {3.879688519346874*^9,
3.8796885429458942`*^9}},
CellLabel->
"In[136]:=",ExpressionUUID->"ec25d9ad-7697-4f79-8ff6-2a3a143629c4"],
Cell[BoxData[
TagBox[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6],
Opacity[1.], LineBox[CompressedData["
1:eJwVxX80FAYcAHCdc+HmHFfHnfMrzzvmPTK1FPl+TbfySnFd8cq08SgK0yZd
YczMqZh6m042jcf8KKv1tPxKDvntGKXE43TuDufszjm/x7Y/Pu9jHx7PjSTo
6ekd/s//9100eh2lPwH1XA8vYYQd3if3ZJhxJDDObeL0f2yLPgevh6aFSUDw
ih2YYWCLY3Eue/9OkkDtYu5Z8SsbtBy8Ke+tkkBuk7TcJtEGbwuP+Quok1BR
Yrl5rtEaMxzFlK3RSWCG0Dd4ESzcFZyqiNVNQm7RqC3vAAubBa7NY5T3EDC0
XvjSjIUbytyEet/3oE6McVwRWWHikxOvEsvfw2O79fhothWeh78K5i5LwfRS
sDPZgIl6JUv1ozelUFyZ3kCVMlBIZI11l0rBRMTPvihiYGdXlE3lsBR6mtSD
Vt8w0Im3URJ5YAp4XfwAzqYlTl9gPxzfJoP5vVVezcaWmNZzrK+PKYPwIMli
rsoCLV0vzzd6yKC1+4OI4gELPKJt3F0YKYNtl1gPcu5aYGUK92lwlwzEsavq
GCcLjLmT0jSQJwd5RhU/5RQdCbqSiReVcrhKEw3aedPxXnCn3qMWOSxkGbxd
20XHbhbNL2dRDjaBdJtAzU50Ka/o8A9RQPytdy8u5e3EuYahgRbbaWj3N30m
ebMD42TO0prfZyA8M9+3I4uGkrARQ1HXDCh8FJK4yzQ8+Vbg2jc1A1+VR7A/
+YyGnj0Kvow5C2eUv96I9qCh/h9lVHrWLMxThEeqJ81RmGzvk3ROCe3JAp+f
OeYoojEK9lNV0MIWJtOczHBPTmcTx0UFzLx3pgEWZvgb6epU0KcqWLqj7Sol
meGt1WG3mGQVPHPDqGoZFU9P/Nh+b1oF6TTrGGYZFWerqIvrzfMwkvpFgZ0z
FY3tv2NPeKqhcaeFQJtFwU7v226pHDUQ5pRGpXEU/D6kaJ81Vw0NM6vB105R
kJBXe/jsRTUsbD+4nu9AwbXNufNvflGDfUuHUZbIBJVjpyr6CRoo+dJVsqZv
gr1CtnNzrwaYS83ljsVkvFGzx/3ciAYS2u7hyk0yHhnw3b8p00ANqz1RcYWM
bdtD/b23NCBojWxlBpCx8UpedK37Avgt/vm1eM0Yq3mrlY/zFyBExMj0PGuM
udSeD4s/10LlY8egClcjrNtn/fR4nBaU5vIHDlZGOBUWDxvXtUBLqTKu226E
XtU0XvBdLYzLGau7Jw1x2j80xUSsheEf8htP/GSIfhmqfr7XInyb3z5gRTDE
FZ1pIpeug/yjoYziORI6WIdvbTno4KhBIeWfURIeP1STXe2ug+H+ZNfYHhKW
3QkpMgzQgdlyZlB2FQm5bsUdTRk6MHyu1DyMJmH1hY+YLhodkK+pfNKVBhg+
ynuh37sE9wueH4rdIKJx4WRswsgSKKZG0o7NE/HJmTjWhHwJupPcGF4SIuq/
y+LXb1sG3tATDaeNiKVv6z0S9i2DRwDxtGkOEeWv7SrGS5bB04kXdMaeiDED
c3l1/BUwoHeJ2Tx9fPpotFy5YxXEJ/04LzsI+C9UPx6A
"]],
LineBox[CompressedData["
1:eJwBoQRe+yFib1JlAgAAAEkAAAACAAAAe6qsAAsv+T/aPt0zv7ACQMsCCap8
QPo/Oa+Ky37JAUAlQI3xiVn6P8VWfuAntQFA2bqVgKSL+j8znOh84YwBQEGw
pp7Z7/o/DLBmuuc9AUARm8jaQ7j7P6rE3p7upQBAsXAMUxhJ/T/YfCi9Mhf/
P8yaE3mtVv0/PmO68vwE/z/mxBqfQmT9P+Dhr8DV8v4/Ghkp62x//T+mj9LR
ss7+P4TBRYPBtf0/V2aEhRiH/j9WEn+zaiL+P+hUh46A+v0/+rPxE737/j+c
EXQXPev8P6F7a+owVwBAifF4Bp3w+j+Cn/xR9OwBQNG5+WkSqfc/ANPgQLx6
A0Bl3umUatr0PyZ0ZnhUKgVASni4Pq8k8j/k9ZdWC70GQJk0mbfLr+8/SuVq
fZJxCEAxDORsTQnrP07kkCseHgpAkZmxZ26n5j/qw2KAyK0LQN5KSsDUkOI/
H5HYao60C0AT6r1myH7iP1ReTlVUuwtAAztwqrds4j+++Dkq4MgLQMOqVqGI
SOI/ki0R1PfjC0D/7Wdf8f/hPzuXvycnGgxAY3RBaMVt4T+MahzPhYYMQEx8
N0SaROA/wTeSuUuNDEAWI/kSxzHgP/YECKQRlAxAzqx7Xuse4D9gn/N4naEM
QNZqX38z8t8/NNTKIrW8DEALu/KREVrfP909eXbk8gxA6Zkv/Qsm3j8uEdYd
Q18NQB0nponpq9s/5o3mgpVlDUBv3NEmC4bbP50K9+fnaw1AS7Hh+hBg2z8M
BBiyjHgNQDPLZB7HE9s/6vZZRtaRDUCwJAh0zXnaP6Xc3W5pxA1AVP1v57Y/
2T8cqOW/jykOQDdREjOjrdY/1CT2JOIvDkC7+xyD7ILWP4uhBoo0Ng5Asrmf
Rv9X1j/6midU2UIOQPahos17AdY/2I1p6CJcDkCwweuiqFHVP5Nz7RC2jg5A
YS0J2V7l0z8KP/Vh3PMOQDufsKM7ytA/eEEoCLb6DkBoKyu+NZDQP+ZDW66P
AQ9AYI07/ohV0D/CSMH6Qg8PQNGqw8A6vM8/elKNk6kqD0Ah5GNmHszNP+hU
wDmDMQ9AWoebQ81LzT9WV/PfXDgPQE/CAeOWycw/MlxZLBBGD0C6ajIMDr/L
P+tlJcV2YQ9AJ/vMpfyNyT9aaFhrUGgPQImOh8L8+sg/yGqLESpvD0AVvi2/
6mTIP6Rv8V3dfA9AQX5ZLJ8uxz8SciQEt4MPQAs0SDDZjcY/gHRXqpCKD0DC
KQwj5ejFP1x5vfZDmA9ApyD7c9yQxD/Ke/CcHZ8PQGEugFbS3MM/OH4jQ/el
D0DymAC1piLDPxSDiY+qsw9AGSZtl9iYwT+Chbw1hLoPQEG/p3w9x8A/8Ifv
213BD0CrT9WJ4Na/P8yMVSgRzw9AhfVKCl8bvD86j4jO6tUPQE71myGJDLo/
qJG7dMTcD0BHiE5a2dG3PxaU7hqe4w9AptMFz5hdtT+EliHBd+oPQFj66+QJ
mbI/8phUZ1HxD0CTVi+h6bGuP2Cbhw0r+A9AZ+wC1IVnpj/OnbqzBP8PQI45
R9UltY8//R0mEbT/D0Dp/KOHqm2BP70jNWI=
"]]},
Annotation[#, "Charting`Private`Tag$195635#1"]& ],
TagBox[
{RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6],
Opacity[1.], LineBox[CompressedData["
1:eJwlzXs0FHgfBvBB0kUoIcKwvTVuEWmT8Pyq1cWtk1yqtSNkqUTaTSnUvtok
JDZFG3IpRm55ZaPWZVWMoZRIyGAYt6GZMZdcyus97x/f8znPOc9zvvq+Ia7+
shQK5cLC/c/0KN/F5sfi7JZc+r8v2vScPPWOI8xRKcxrwflX1dF6euFQeT9n
tGXB9NoEqrxeLP62DnruuWCQ7dlTUmoavLu1Jnfop6FtNvAWn8qApfrlmLXr
GVDoHqBNUCsRYFVln29ZiaymzNBxKhOlZrHab39hQpT6xIgdz8TrgzulG4aY
2B3A4rybZqKrgtqf49EEnpzUvaqtCbL55g1q1ixY2bpYx8Y0Q6W9031StgWt
JXOytM9v0CJ91Bnv0opLTSYO5t5tsIl74hw414biktjuINMuzJ83caPVdGNs
1Vi8g08X9EJIGGO2G7QwBzuDW11IeNde7m7Vg/s2y7M401043JkQZFrWg2Rm
/M9HXnZDq9J4z2TeJ4RxEgV7vD5hzaJ7ERr32Mhczopead+H+19qcwPb+2Fn
e9HrMr0PkhTz8GZJP3qCjbd8PteHEW7yBpc1A1jzLo7bXNCHwIh0z8IfB5CU
6rTvmko/zEKN3T9xBhC9/rXSfHc/KG9/H6bPcBCAt2m8Mxyc7B22v7yTC0q2
pKo7joPP6vu33QrgInWRdk9TLgebPof+1RrPRSPzZ11GBwfLQzvVXn7gwsBt
LtvfehBFX7nivJBhjATSCntlhhDyS0ZvTd4ITiRHVrfe5OKET83iLptxyIqz
2TUMLkwzVP0kAeO469lIKfmHCwatNsTpj3E0aavuShBxwZmR25E/Ng7jvPyG
fYeGYXfpQ6f5PR54z9pa/6GOQPsnSvvG5ZMIHjLklBePwqNFa9gikY8++scl
dcxRaF+6KHV+xMfBzmumLYOjyOjy+M/dBj6sWMPhQ1pjyPngP8iiCCD3+IGK
eswYKCEvO+6fFSA1Qt/unPc4ZEw1lP8+LsQySatf9IWF7JbMd4gVIjLkcmxi
yjg2h/Z2qTOE8PVlv89jjaM8+vaxoFEhTPamn+zcysPAVesIg1NTqFPVTNum
MoG2Qqeql7+JYJnQWG1vPIEx/zou44EIDxefHzywewLavIzyHqYI8dMdZici
JjD7Okxrs6oYHuxbr+6OTGBL7b26VwwxxgpURLO1kyirkNerHpZgmf4VGtuK
j0U7NPJ3l02j0SbJLMqej9xkB/Ui9jSuHsrYquPKxxnjTF7MihnI3ny658eT
fPjfLGnOPjGDmW+8gA/pfGw6+I6VZzSL8R73/DeyApg42b7g1c+h4ItvabCy
AHz/BnrO9BwCV59+ukJbgHblGUeR2VcMOl5vdNwigOicuOJ0xlf0VFWPNAQI
kFiqqWsY/Q3NqTTD2mYBRocdinZtpZDr5Zbm3h8FaN1QW17uSSF7W3ds+zYk
gECma+rGeQp5oeC1z2ZeAG+fO90xzyjkedjN40/NhfiU9Fy3ebcMuZCcHupp
J0QxCXRuOCFDrIoLwiUOQpiydUbsEmVI+dCLWMtjQhhtcvQo/ihDitymGaW3
hVDc7nCM/assCTq9uGx/jhAtBwTVSumyxChetWqyRIjSSpvCdy9lycP6jU0m
TCF2+hzU36ApRzIsfMfyZ4WwzjUc8G2QIzdUWEZZR6fQuF3X96O9PKncqvPE
JXgKp/YObrseKU8G6SGYuzgF91IPI9sKebK9SNXN884Uana62zYYLSYj+7wi
V7yewnULJRcXfQWyOrRY4Vn3FCJ0xfZ8HwWCVEpy4OgU9BSTjnfmKJDb3NyH
9YtEoNOy1uUaLyG7oifehG8X4Zr1yMRRp6UkuABHaPtE8G7ssTieupTcfZs0
+N5DhL25zb1q3KWET/1+2uyMCCyiM5NydRnJeB71HTd/oW+rmj32aTlhcloL
/6gQwYetlMyyUiSiZeu27nghQgAzbeOHFEXieLjB8R5bBGPDc4I6jxXki1j5
rKu6GGcmq7cFSZTIOh3f+fl1YnCPMoa/81cmLj+UxxaZi3F/lZNzU4cyeZB8
KGOJsxii3tKMch8V0lpZYFBxRIyS9346rpkqZK5vrswvUIxVb+/GPepVIa5m
WQ3V0WJYt+wc7vNdSaI8pg4EJYmh+bydOpy3kjAi7Xs0M8V4laav+G1yJaE0
j/J/rVr4X59zpy56FSkKtNAyFojhdaZCrqJJlXQmXsnt/CZG8O8XyvavW00W
/dVhelVRgkgnmoogajU5In9xVz9Ngj+VTSYEUCNXTVpabmyRgFNvklb4QI08
Pkg9ZLNLgq9XxnvXK6uTJdn1QXfoEqTejmBYTKqTzUw16Q9BEmQqGNLJMQ1C
5wf8JgyXYGZ27aQMW4M8sVO87ZwiQcLFOb83nDWkz5+uN5u9sA9LZf87WJMo
JpQW5JdKMKb5rNl6XpP4drvVyDVLECyN6qBbriXL/uw/FfpRAp6ElZjVsZaU
HQnWZnMlSFbkaZy/rE3kumLCq2SkeBwV91l3QocUpq02MFCWgubqU2PxWJe4
Hc7qSNGWYn+m2r/8L1FJ32snqusmKapcN29P9dMj/wVVOtPb
"]],
LineBox[CompressedData["
1:eJwVlWk4lPsbx2cxss/zjJ2SKJVCMTqV6nfjUESLZAtFIikqTqFOOhVFdpGy
VgohpaNseR5SqZwiy6FD9m0syTrMjPn7v7iv73W/+V6fN/f9WeXuZ3OCRqFQ
PizN//MN45lKWgoP5ZwX5qQ+VybxlNrvpiU8dGmjwp6voUpkZWnElU81PFRg
ambKZiqRPq1WGgcbeOgo+yjWk6pIvpNv8Hbl8FBfWWDhphoF8jw7Qbp/lofk
X/vWerkokCsPHX7hQ+ejgG77BNkFeTIoto0buJyP+E4GTSo75UmtwpRU4To+
aj/WpK7VK0c2/uMCYYZ85LhK6MiIlCN1JHtuJuzjo2jK+sel/bJkdyhH4dlV
PppepyT+pphFRmfll7Gj+ChYtT5FxY9FGr31dS2/x0f76J4ffLVZZCJl6nFt
ER8Nan5flfMEJy0u8di9fXz0ekT/jf1LjJy996bV+xcftRwYmXQMxshHJSGX
JwR8JLNFVO+DCUYKZug1AgUBKti17YVjIZN8cVbqkJKFAPn51T5MV5ch6+7L
BhXYCVDoyPjL2jJpcqBGJcPEQ4ACyiuDz9hLkyrK60dOhwiQ3X+3Iz7dlSJv
VJldryoWoJONdwLD9CXJ9BGrXLu3AtTv56u7+YcEWSJv+3WkXoCK3/YGvb4t
QY55u6sqjArQ03DbaMVRcdKOFfLylMYi+reY6R1LipFnd4S1CfUWUfOFDsU/
g8TICM8o4Z2di0iE0YX+NRAjibKUvYTDIkqqbtyfnb+MXHe8pFc2ZhHpTTRt
TioQJRde/pJ9w1tEmdyYJwN9IqTcD+42G3EhYjf+4bHzuQipK0Y5NqggRGJ7
8eNBl0XI484y+bi+EF3NsBEJVxQh60Q2/O55UoisRE19ve3pZPphjwBmsxA9
zzi2vG2eSpaE+NzP6hEiqiFpxGqgko2558ltE0IU3+Dr3ZdDJUVCQLSIQYGE
3YafzZyo5NbGfTbt6hRoOOUVlfGWQj645MPZZE+BP7ZkHVjvLCQ2keLcmy4U
iEsjizRXCglSJIfReZwCghXuCm09i0RXVJ961Nmlfa35Bc/Ti4Rapov9cDgF
LBJo+Xk3BcT9mv01DyooQH0aU7u6nUdoi483cKspsD77Xb1lLo8otY7s3P+R
AnYmFv68CzyitaV2QdBMAf25HV8mZXmEwrDxZqefFKjK1ezmHlog4qXZ6SwN
KoRXrvh2g8MlNGy+5Xmvo0JomDRuRXCJF0lnS0ldKsy7RdVcvsMl6lcWNPka
UeFSE/eNLHAJGX0tyc+2VBBvGDvOSZkjIuyUAq/fpMKrQjp3yGOWuJbBPzg9
SgW0xqNG1mCaOLCp5NyGKSoot9WLzbCmCbUq/zj3eSrU10Y+k5uaIsp6OPX1
DBpkJF0ulvx7iphc07a/QI0G3xQac6u2ThHu+cXWngdocKFB6Xqm1SRhXOpr
0fqSBuu3h0p53ZsgZCy1vZllNHBsZpzPD5kg2r/33zInaUAK1SZUPCeIQL5z
7d91NEgc1jA8ZzBBPEd7d8f10yDVfSaGk/GTUH+/1sxSkQ5OYY+8h1eOE5TG
LqgIpsP2mCeZHQdHiBvDlQ+C/6LDDvyJqbPmCCFOSaNtu0WHMvZ2wxUzHIKl
41hTnEiHM5/JOvd7HGLNzYbdhc/p4KVUOD7QN0xYGlXvezhAh1SN/NU6N4eI
hEePnG/ZiEDnhRslItP9hFaAZ6CtNgOSNj5VlTrQTehs7zyUsYkBN+0WA2L1
ugk2xUGPs4UBu/TY7E3MbsIk0mIgxJQBDqWa5eSXLsI1a6NtnjMDWknP6RX7
u4ikpkk9WgwDxl2rHBVzfxAMw5DBwikGVOR83NXc9Z3om7lrJ/lGFM4UbVZ1
JBoJy/5Tf8afEwPxvPe5qqqviH19sRvU1CTA63W3vGsBgThv3a/WFkhC2LNi
6yH5ZrQyrvVU9N+SMGJ5Xl3CphnZuu47bFsuCTGtW4eso5tRJXebdletJMSK
FK/ZuawFxevgTXO9krD7z2CDDwstyOgusXatihQs3+uaPjXUiiJPLf8aGiYF
QUoUnmF/O6r6Lb50b5QUDOjocsK1OtCsiFgWfkcKwjr19mMnO9CxjKnAtAdS
IAj93vlqpAOxmz5pFFdIwZmWV4aXZ36gjp1BF/ompaDBfutAWXgX0sVbVpge
lQZ6hlb4fGUPGogauJZ4QhoG5oYCKd09KE1ibnDQRxqyct9uXkvvRVIiSkWR
gdLwn1SlS/PuXsSZdTRviZOGQz9+86381oset3f4etdIQzoWaiH/sw8tz+kn
YtbLQESQqmbm74OoafXs6h49GeipPf3M1WcQ3X4gGsHeIgNdZr+vtowfRAv3
19q2mciAyZDol9yuQdQa5T2k4SwDqtypU/dDhlCC/xj2KloGOFaaiyXvh5EE
mnFrn5KBb6sxa9aVURRovE7s1YIMhB3Vf2RfOIoGTI88i6EyYdTpa8tQ1yiq
3lO1YMJkgoSgpnLy9zEUbBOVkKvNhAF/488kNo5GTqx5d8GNCf882vbQsOQn
cjrp4HPgJBPepW2qeDX+E9Weuo1r+zGhyP7G40+sCZTl98ul4zITtjocGPnN
cgI5B72ZNU1mgv5yi6yj5ROoLvLwOvwrE1qPma2/mv0LbY+59YXTzITQdewj
i+9+oZy48oCadiYcCql7/6rvF7qRtKrqIocJ3LynD9s0JpFa/ezGnzQMzqrL
FAkfTKKWtup3h9Uw6FEoPJuWP4V2jznNaRzGwLyuziFnYQaly11vDHHAoLOQ
++Hpqlk0bZRX2H4Eg3JBtpOYxSzKjOB5JbljUJea9e/35Fm0sDa1VfwsBilF
xEWxnXMo372jdCICA51E+XlBMhfRIhhJ1tEY7Dw0nn7hPRc5vNA5/zQOg42p
Piae01zEoFzR9kjGwDr22GjRwXnkmqaW8u9jDKZ3pocg1gLCWo9eriQx8Dl4
I8i4gIc8hTcdVGswUPX3nzfp5aEKrefswA8YOFeXZfcq85H3H5SxzV8wKNij
OSYTzkfVrAcuj//DYLGzdPtJvyUPW/fsipzFIDyustnyqBB9CpBQHZ7HYFn+
fsXuTCFST9WfMxNgsPaS5VubXiH6h3OtUEjHgW+U+eSMIQW0bmmq++M4nBx1
+xK25InWag+q00YcUjzP2vnNUGHC+LvKn3o4xGP8riRVGiyr2s/O1MdB58GO
JnMTGmwhtnsNbMXhofm9g1ZxNLhTjv1z3gwHi+vNMRZb6JC/PWwgcQ8OJ26c
fs50o8PbUp6wZC8OlEJOdFAkHSZfD+gLD+LA/uhtvaefDvv/rki+7YpDOIdM
2p0hAp4G+kXP3HDQpRpmZn4VgStF2Z8bPHAovdgRRlIYkP88flHRB4e9CeeO
e59ggETBSY+sizgcSHD9wN0qCu8fy216E4tDm9qgWbiMGPxYHWHRlYCDi8jH
D6v2icHMI6E7/S4OvsFpBqPRYrD6ISfRIm2p3zpvp5GcOFxLJ3nNuTgIxI3c
WnQl4P6KLfLz+TjkrgpGWJAEvEjN013+fInXuPrw1xoJ6Lqf5Ob+Coe5E09u
Md0kYdfd0x/Gq3GIvTDjovRMCuwUerrw9zhcKxURm2dIw5lE+wX2Rxyy4/08
Gpf+TmqCic6lrziUgNaXCmUZWIhRSljWjkONHbYtPIcJLGZ0vnYnDhF65pkb
xTFYH01/b92Dw6fFlxdPIAwcIse5CUM4FFma7FksxKD4Vo2r+gwOPsbjV048
wiHH8rPSTS4OVsZXI+eGcbgv9e3bGA+HAhsfdp4+C67GdpqX01jQJ1sm0fmJ
Bf42AxQNURbEay7CXRVZ8JQbK7slzoITpru8uk/LglXygq4dxgLfqXrxF8py
gJyowxWyLGgP5YqGBMgt3b3YI01FFlxSfOp89pscKGbKK/5awYLrW9CoT7I8
9GRvEt7ewIJACim9z0YRmr1/K53UZQFN/ktwwWdFqN2wy99xicuoeWPiLwsl
KCjcO6i1jQV1SXvKPO2UIfOczYOoHSwQUym7uqdfGeINHI9MIxZku3RPnQtW
gcDXnl+rzJd47rUoHylVBZ+gM+HrLFng0Zj+S85jObgaBZjGWLPAjR9kK624
AkyJv14727JgaCSoBZLVYMtft869tWdBhl7z2LDXSlhnGrNB+wgL7OKVxB1X
qUPmXwUGmAsLymwMjJKPq8P/ALHY1nw=
"]], LineBox[CompressedData["
1:eJwVVmk4VYv7PQh1kKN9zjGcczbhajKUqET2W5LEvxtdrkyZKpnHBlTCbSCR
zGRKSBEaZNw713TILFOmkCHj5SBjv/4f1rO+rGc9633Xl7XTxtXwEjeJRGL/
xv/zsHvK+ezrCGR5/MpKzBMnzN2VBfV8EEgurZvh0xInKtN7VtP9EQjvbyiS
0RUjbpQrzrcEIoBYiNVLtokS8l0BE5v3EBidciy1tRYlIgX2dZmEInC8GhH4
+pBO2Hr4vheMR+C+R4j5Fl4acUi5//2eZwiw/lIONsqhEuR5+HAqBYEDEaXm
FiZUIs+dr9A/A4FAXeu/d3xAiHW3Jx85BQiwg4PnSKE7iKb9nI8iHxBoCMg/
OKazg0ibMy5SLEIgGh0wLNiyg9B1Yxbb4wiopdaaZAWKENGumSW99QhAHxEr
G0UhriqRS1caETicaGB71IJCaMw6ldJbERAzthl+I0chhl2Uy851ISAbODUg
6CtM7HcpK68cQUDVFHuhsiBE8ChK4d/GENhvPz9SES1EdEwH4Js/EFhqzLl+
UUOI8HM+TRz5DwE95gWtW6GCBNup7dPrDQTymYsyD7UFiET5QxVsEhWE1a/F
fVomE25TsRWjPFRAwjDhx6/IBN3J8l8pMhUc1WTt80XJhI3jRGUknQrx9nr8
Q6RthOo+/ap8cSqkWn5tula+ldg6mVvVyKTCVS2LK6dvbSXeOHhVb5WhAlvj
JeX2Jj+xfvVXjZ8SFc4mRKzrbucnmvbY1MYpU2FxU+98dzsfkTZRWftBlQp/
RNzKuJTIR+heDWbPqVMhwLQ2zFSRj4i2p9XbnabCV9boUX4LXkLpyr5GfWsq
6PXy2aUM8hD9VyVdc+x+5y//yQzP4yEeOSGU7fa/9XvZm9p3eYgJ9zWDJhcq
+EdmWc/J8hDP/eq/GPhRwW6JE1/mxU2IRjj2GcdQ4XgqLT9ZmYuojrx4uzCe
CjH+o66TglyEV8x5SbEkKkTpF8+VjZGIlkR16+50Khz4K0J3MolEhGQKfDcr
oMIAT1KkGEIifpW+mrJqoILJs/c+23du4rl4cuinZipEHJI5wjuygZtXPFWU
bqdCR/OQcUnmBl5U4+s23EOFsO7Rf4wPbOCerXqcS+NUCK5rKx7WX8fHxibX
HHho8Ffw0RLftFU8+sdAYj0fDQT9hJ2aXVfxk9Ntx+TJNGiSulacf2wVT50v
uTNNocG17S5ClK8ruNlGCI8bSgO3784jy4wVvGmHvIC3Gg2y2xSFg94t45rO
zhMJGjSQcF4fdni0jOfW5NZUYDT4cCfkbK7dMv7Y70AQ5RQNfqlXyGvTl3H9
0UMbrwxpsBKfGv/o1hJeV3R8dsiRBkURlsl2Zot4ldXfbeeSaGD5UeeRr/4C
rlISm389lQZOAid7Xygs4Om0nrCkdBqoxJmpkIUX8KA6c/2pbBpc0RPpu9U6
j59Qsam6X0gDAdRzbs1sHif4nQvLm2lgmPTz/rsb/+EluQEJ8jx0mBwIdHN4
OYvz6RtJxPDRQX9xnRnoOYsbTOyK4yLTQfvT4OrisVl8TKYhuoNCB0ra6NPv
bTM4Eica4Y/SoT4GTn/mmcEdA18/aFejQyfp3mq1xxTOMOnw9nOjQ9XRYJOy
exP45cUszqgnHfLLFMmyphN4foSvp8F1OsQczp+qVpjAdRqk3OVu0wEX+nWx
/Ms47nnC0ak5hA46FuoGVrvH8Xp5kq1sJh2y9lT39HSO4r5ce8997qOD1VvW
HjezEXz0pECX3Dc6GL7ON2lXHcHPPZi6eHeEDpy2yzpWlBFcVviN66FJOnxx
K4uerhrGPzNVwlJ+0kHExeVji/Iwjh7RbPRCRKEv9CvNBhnCK1wM9Vm6ooCU
Ppsa7B7Ayb0+p13eiUK8cs2vpP5O/HvGzshkPzFYdjKone+uxCN3i28pMhKH
h98UdPxGXmLh8ZdrrKUkIKR9j9VJjWbs+rUATz8ZCcjKvNOyz70ZszRMkoyR
k4Bz6y4Xd2c0Y/Lkjuuf5SWAo8u3xYbSgrFvau8+rCYBB/Oapwe+t2DcF2Qf
ChpKgNtFNqEX1YZ5iw6dKQyUgB5meeferZ2YaaRFo+CYBDxMa0RMDfsx5lsy
w/GHBBy6u6joEdmPDbQUXmFPS0BLZUAY3tGP2Qnv4LrHkYALluZJ62YDmEtw
9cFfXAxQSCb6H6gMYgH+SnH/MRnAe0Rrk6XzDXvpxGXXYciA+cYojbqgYcwp
JDdPxZgBfS82sY6Xw5hittlGxAUGcPb9X+7WpmGsYOx99J9WDIj2ZYcPiY9g
pTYO7FpnBpwKJdDr+SNYs0mbYskDBmxXdSwIHf+O/Tz5YiW5nAGN1R0xYj7j
mF9JcmDlJwakhQjkk9PGMZJyvNBEJQNkXkurKdSNY/ySYTuV6xkQPxJG8DIm
MPrKDd3KTgbEDHZoUPEJ7GCOftz4HAMqHJYr94hMYi40zpEDMkyQ8ec5jH+b
xuZDZiqM5JhQq3U0dZ4yg3lzT+j77GGCPxdr1hFmML/ZPqt/lZiQ1a4beTBl
Bgth1zww0mCCkOaZP5VsZ7GsWwldN42YoNWpLNnmO4cNfz9xo+I+Ew7vz+gd
3T+PnUhuTNsbwgTGuVgfrXPzWIqJaUPEYyYshBj69LnOY5b17tK2UUz4Wuy9
v+HNPNaTl/KZ5zkTlnX5bd8rL2CtvptS2uVMsPtCeXJfm4MdUA3Wy/nEhPVN
gy+KVzlY+AztGq2KCY9+aY7LhHKws9YK9d/rmTApPWC4/oWD1Z0y977XzQT2
bvnHDx0XsQqRYnYNhwk33iisnspcwnbWa3OUfjLBxCbrlUPzEuYf1ILGrjHB
I67h3/mVJUxzedzTnpsFcbpnJg+dXcaKe0XRbRQWCG9ffUysLWMFmd4eZ/ax
4NWHsbH7TiuYiDXXswJFFuwquxncmriCuUmE1kgos8BYtCs8tWEFUwxNZ04e
YYGi7YF/OvavYtkebdUhp1gw/WkgYnhjFUs7doDRYM2Cz8OlXpvv1rGKs+TA
NTsW5H+Lalr7sY4NXRz+sceeBXeifY5H7dzAZAKiiu+5sMBuWlUtK3wDS69e
uQC+LMiqM7d4cW0Te/FnRezbSBbo0SyFbimToNoqgTQUw4LBNbqBzHkSjLp7
2VMSWFDGl6Cu4kUCuUi5I86pv+99xFpOKiRBRldwp1wuC9Q/Nqr3aHFBlvV5
enwNCz4ZjPSpenFDrYf87do6FnS3cLZ9TOSG8UDe0aUGFmiuzqi2VHHD7ozC
9+fbWTC56VXbIc4DL38wjIS+sWBtdXY4ls0DdWucUvURFmToPLusscwDPwQb
ZR3GWGApOeAf/ccW2Kvkz6meZsGSUU27f9AWyPYceeq/yoKcPn2dQj1eqAsq
W8vdYEGta1dvzB1e+BEVbdtHQuHvIwkUk3e8sO/j6YNH+VHYlVVlGybFB6/X
X7cuICh0XykveLyFH3L+8Ra5ooAC1W73UwOubTClYRHwz34UNMdn2LLa20Ce
c3Lh+UEUXLGdprrB2yDbhvplUA2FkQvj3HliZMjC3saankLB23t/pqKOAIwv
xW+7qYvC4fNux6uiBWBXboBPjD4KuoIsZ8FxAchgGpq3G6Jgn0C6PBomCOkr
c5JnL6JQk5x7OGhJCEbyusKdbFBQN5BuNTbaDjL2BFfIJRTsEnSyrD5sh7SO
sOEaRxSuTuY6ON8RhuS3ipnHb6CQ3LLv8XIMBfod6GJWviigg+m5fi0UQKU3
H9y+jYLZkHnPHUERSAxvcCgJQoFuHxmpeV8E4p2dFFWfoNAwIHA58MkO6JH9
K/l8JAovj401dnftAPFedYpHDAohieZ8J6URiD0jMJ/77Pd/Lq/R3pcg0Mm1
YNOQggKSmH1mToAK9KKetsnnv/2NPLSyLH/vnF3Z73dno5DTjbmTBWnQ3v9E
TicHhTMCNUXLl2lAjb4ZcykPhXJpRHu8kgYRW3Rvpn1AYU1h/qVnMB3Cv41p
MP9FofTjcLfmcTFojm3KOVqNwnNXutOJIjEQPleIXmD/7lsiZWNQVRwel98j
RTeh0PzqBa+gpgQ0eru4v2tFoUA5LEK1TgKEFIyHWr+gwBHbeU/VnAGPEv6o
FO5F4a6/odXxp0z4bCikqjiAguCoc9ouNRYIkBdf6A+hQKZ+4k0YZUHwjcr7
D8dReKShzG1sKglspdc/MydRmCpTkZqkSIEhJiWNzqBQbHhQPdZWCv4HAdTV
UA==
"]], LineBox[CompressedData["
1:eJwVVHk0lesad9nmbUphR7zf/kSlARluku8pjqtIoiRTDilRSKQbpRSdQnR0
jJEMUY6o1FE53tcQR5OTdOxMYVMUyhbtnV2u+8eznvVbv/Ws9RvWeij/MNdA
SQkJiSPz8/9dap5m48lCUBYxV3alikPuoLQRdxkE16ieDTEKHFKweUrloyyC
2j/OS4tTtMjFCHfLOHkEVNuFMR0NLRLcpJNYykagPK4VZbNWk3iMx1WsV0aw
V/ibwZMWDWKvwe9oU0Hgkkk5KfppEG7QDVq4AEFA1m65iZxF5I2iRb0DB0G2
iVvYVfOFpNkse6RnMYJM5ZYWA746qfYRqxzWmcd31SqN0tVJWmWDb7YeggUk
KcP62wLi4LZNPLoUwQPbmJ6aATViEXuHPmmI4LfCECefAjWiX7LIccFyBC0m
/a4NfmpE4mt3ttVKBO/Go+8mvlMlNTlBlkmmCEJeRi62ZKmS641PffXMENiw
yi1X56uQy2OrE++aI9j380eTExYqJNxmuqP73wgsMmrrDoQqk2WDpyNWMgiS
3z9IXCpiEw3F4WwCCCoa1tWKC9iEZeZQv2MTgiPqapfJFjbpT1BWPfETgjie
T9jzIkWStTy34rkjAqukK/e8gxXIlyn7kjNbEdg1+C58xlEg2+oEV9ZtQyDF
W79F+ESeyLhtSS5xReDg1G+01VSeRMWKgk/sRjBR2GURqS5H/rYv8V/rhUBk
fKzbpU2WrFTb7jnqjUA+yFY2IVmWDJWUbd7ph0BQyb79REGWuLbtWrZq/3w+
996Xk0Uy5Fa2FOIHITheuqrWsVuayO+t1MwORvDHc+XU4WvShAhlZKVDETS9
OOZtaCpN1nDvD/dEInA+/r1Bz5dF2FELi5LjEWQ5hPT/0idJghiSs+ksgqQz
H/8U3pYkjfIHfxUmIKgp4wVwEiXJ8fzG03vPI5Brsxn0MpYkoy0RftZp8/zJ
Y5yo5H+R5sUvl4zlIejyq17duUeCcIdjFxVeRWAviG69ZC1BTlQuU/K4hoAd
YyzfzJEgZnanxI3F8/lWXP5Olc/hwkNrunPLEUBboFJn8Q8cR1KyHB/M69+1
JyauTow/9JLLoocIzFIPP5JJFGP32am00loEPUu+a1o4i/FKC8/zUgTBSW9P
71P9s5hXbnD8UTOCG+23Jg6xZ7FpJvYy6kCgRSZbmDgRzqsW7HrzGkHkwXjy
aZsIy7Uv3XGuE8Fkm/ZTHUqE37KTnfhdCJ7VHTkw3CTEyfEeG3IHEPxaoPp4
Rk2I3x2a1FX8NN93Rs7HUDKDtyfpaz/4jIC5VPFQKmsG15bt0twvQMBtD575
GjaD0/l/qjROI/iv4u1cIZrBsPuCRIwYAeuo0h2Tc9M4x44e/CBPwfJi3cdu
AV/wVu2dJU/0Kejcs6bO0FWAs4ZWEy8DCt57pMVuNhfgoQq57jFDCrj8qMR8
LQGOhVpVFSMK3Ed9Xr19O4l/D6Rj3UwoAGvxlorwSaxQNenas4GC71OxkmM5
n3GL3UWJCXcKWIJvhvt1JvAC5SDtOA8KfrA+834aH8e+nRstVD0puB8ztO9A
3TieOTAdYupDwX9CKvpifh7HBqnenUcDKNg7esOu5uYYPvtmxa25MAr2edav
H3H4iDeGtnipnafg1Q7UdLhyBH/jjdo3XaDgXj/Xx/TsCK62ZZtGJ1NgY6el
Y7R7BBtwtsv1plIwohcc0CA1gtlNXdVlGRSUuuh+j/J6j3mcCSUopuDW0i/F
+xe+w+GPF5JQPH/vkqedUsbHV3X89Z9NUxCg5ZBeEteHrdYarfb/SkG9q8Aw
amMf7tj8xVIonPfblOp0RKoPy0UnOuqLKXB57sWIzvXi8Jc3I2IlueDKlA0s
Se/BkDhFVqpwIbX3Qbzv7S48+OmsT8oyLrg9Ua/LUOjE+o2lGc5eXPDQFOWe
5fyN01Y1rGiv44LM9Xyj+KqbeN8U62XrChrKHzklxcc1Mf63Beh8Kg3HVAau
rGjqZA7Gu4m3XKJBQiFJz5rFY6LcqjvZ6TSEl5NP0XY85pfpqItpGTSodC+p
Cn/MY26tE81m5tHQ0OgVc7T1DSOqn/vnejkNS00jf+zs6mbS2tkpTS00ZO0+
cWdIrZ/JKToUlNhKQ26rs/Fy836mKPKFrcNTGgo0/9JL8ehn7mukfXv6ggZb
/iyv+mo/0+OpHvTqNQ1PKzdlXFwzwBjyObaDfBqSZmqUm3cOMsbVx3WLh2ko
ClmVbxIzyFgldIsC39Mg2661vrFgkHEyzKsa/UCD/OWWcM+xQSYiBOlOTtLz
//0MPzCBz8RanxbdmaLBim01rvw7n0lQGuyInKbBWZ/7cqCdz2RVFiUJhTTo
2/WukKWGmMJTrP0Pv9EgNx103dNhiCnfHrgpVkwDz/+6bFfYEFPNbV5i84OG
OqlrrxMyh5i6KQPR3BwNX5N0s33xEPM/JclpnQ==
"]]},
Annotation[#, "Charting`Private`Tag$195635#2"]& ], {}}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
Method->{
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}},
"DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{0, 10}, {-6.422472611037541, 8.194520807280572}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}],
EventHandlerTag[{"MouseClicked" :> ({$CellContext`yzcoord = #}& )[
MousePosition["EventHandlerAutomatic"]], Method -> "Preemptive",
PassEventsDown -> Automatic, PassEventsUp -> True}]]], "Output",
CellChangeTimes->{{3.879686444054356*^9, 3.879686462378708*^9}, {
3.879688512450357*^9, 3.879688570077677*^9}},
CellLabel->
"Out[136]=",ExpressionUUID->"1296c8e5-c2e3-4cc7-9f54-61d6e99f57a9"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Dynamic", "[", "yzcoord", "]"}]], "Input",
CellChangeTimes->{{3.8796864791169167`*^9, 3.879686482415123*^9}},
CellLabel->"In[67]:=",ExpressionUUID->"6f7697d2-834b-46c0-a756-2b6ba822dad5"],
Cell[BoxData[
DynamicBox[ToBoxes[$CellContext`yzcoord, StandardForm],
ImageSizeCache->{53.484375, {3., 9.}}]], "Output",
CellChangeTimes->{3.8796864830281963`*^9},
CellLabel->"Out[67]=",ExpressionUUID->"dec54fb0-98e3-41f3-ab34-0bd977d06b8f"]
}, Open ]],
Cell[BoxData[
RowBox[{
RowBox[{"startvalue", "=",
RowBox[{"{",
RowBox[{"1.262825885085102`", ",", "3.6040293905747296`"}], "}"}]}],
";"}]], "Input",
CellChangeTimes->{{3.879686513773889*^9, 3.879686557756364*^9}},
CellLabel->"In[68]:=",ExpressionUUID->"491b445a-6e12-475f-9aac-362e1ec85ae7"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Table", "[",
RowBox[{
RowBox[{"FindRoot", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"Sqrt", "[",
RowBox[{"\[Lambda]", "-",
RowBox[{"y", "^", "2"}]}], "]"}], "/", "y"}], "==",
RowBox[{"Tan", "[", "y", "]"}]}], ",",
RowBox[{"{",
RowBox[{"y", ",",
RowBox[{"startvalue", "[",
RowBox[{"[", "i", "]"}], "]"}]}], "}"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"i", ",",
RowBox[{"Length", "[", "startvalue", "]"}]}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.8796865664957523`*^9, 3.879686609621413*^9}},
CellLabel->"In[69]:=",ExpressionUUID->"17dc0461-3ce4-4a3a-918e-34e77564fc7c"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"y", "\[Rule]", "1.2523532340025887`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"y", "\[Rule]", "3.595304867161548`"}], "}"}]}], "}"}]], "Output",\
CellChangeTimes->{3.879686610130485*^9},
CellLabel->"Out[69]=",ExpressionUUID->"63803fd1-78be-4d40-b5be-58ba1d1482bb"]
}, Open ]],
Cell["Raiz do GS (func. de onda par):", "Text",
CellChangeTimes->{{3.879686632905775*^9, 3.879686634007895*^9}, {
3.8796885802037573`*^9,
3.8796886012212067`*^9}},ExpressionUUID->"9976ad23-4f8e-44ed-9f19-\
5ae7a8f563cf"],
Cell[BoxData[
RowBox[{
RowBox[{"y", "=", "1.2523532340025887`"}], ";"}]], "Input",
CellChangeTimes->{{3.879686636763167*^9, 3.879686648105413*^9}, {
3.8796886073613653`*^9, 3.879688618853397*^9}},
CellLabel->
"In[253]:=",ExpressionUUID->"7efc6c3c-46c4-400a-990b-21c53d10d342"],
Cell["\<\
Fun\[CCedilla]\[OTilde]es de onda anl\[IAcute]ticas, com os termos q e k n\
\[ATilde]o determinados a priori:\
\>", "Text",
CellChangeTimes->{{3.879688626143622*^9,
3.879688638782168*^9}},ExpressionUUID->"538081a5-156f-4021-9132-\
476874e7218b"],
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"uEven", "[", "x_", "]"}], ":=",
RowBox[{"Piecewise", "[", "\[IndentingNewLine]",
RowBox[{"{", "\[IndentingNewLine]",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"Cos", "[", "q", "]"}],
RowBox[{"Exp", "[", "k", "]"}]}], ")"}],
RowBox[{"Exp", "[",
RowBox[{"k", " ", "x"}], "]"}]}], ",",
RowBox[{"x", "<",
RowBox[{"-", "1"}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"Cos", "[",
RowBox[{"q", " ", "x"}], "]"}], ",",
RowBox[{
RowBox[{"Abs", "[", "x", "]"}], "<=", "1"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"Cos", "[", "q", "]"}],
RowBox[{"Exp", "[", "k", "]"}]}], ")"}],
RowBox[{"Exp", "[",
RowBox[{
RowBox[{"-", "k"}], " ", "x"}], "]"}]}], ",",
RowBox[{"x", ">", "1"}]}], "}"}]}], "\[IndentingNewLine]", "}"}],
"\[IndentingNewLine]", "]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"uOdd", "[", "x_", "]"}], ":=",
RowBox[{"Piecewise", "[", "\[IndentingNewLine]",
RowBox[{"{", "\[IndentingNewLine]",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-",
RowBox[{"Sin", "[", "q", "]"}]}],
RowBox[{"Exp", "[", "k", "]"}]}], ")"}],
RowBox[{"Exp", "[",
RowBox[{"k", " ", "x"}], "]"}]}], ",",
RowBox[{"x", "<",
RowBox[{"-", "1"}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"Sin", "[",
RowBox[{"q", " ", "x"}], "]"}], ",",
RowBox[{
RowBox[{"Abs", "[", "x", "]"}], "<=", "1"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"Sin", "[", "q", "]"}],
RowBox[{"Exp", "[", "k", "]"}]}], ")"}],
RowBox[{"Exp", "[",
RowBox[{
RowBox[{"-", "k"}], " ", "x"}], "]"}]}], ",",
RowBox[{"x", ">", "1"}]}], "}"}]}], "\[IndentingNewLine]", "}"}],
"\[IndentingNewLine]", "]"}]}]}], "Input",
CellChangeTimes->{{3.879686873247897*^9, 3.879686964036525*^9}, {
3.87968732787973*^9, 3.8796873961125603`*^9}},
CellLabel->
"In[254]:=",ExpressionUUID->"b3811933-76df-4f58-8fcc-42ec648eef4c"],
Cell["\<\
Rotina que finalmente calcula a fun\[CCedilla]\[ATilde]o de onda completa do \
ground state:\
\>", "Text",
CellChangeTimes->{{3.8796886470372066`*^9,
3.879688657769248*^9}},ExpressionUUID->"90e26063-f696-4af4-8248-\
fb270525db47"],
Cell[BoxData[
RowBox[{
RowBox[{"eigenfunctionFind", "[",
RowBox[{"y_", ",", "u_"}], "]"}], ":=", "\[IndentingNewLine]",
RowBox[{"Module", "[",
RowBox[{
RowBox[{"{",
RowBox[{"normalizationConst", ",", "normalizedU", ",", "energy"}], "}"}],
",", "\[IndentingNewLine]",
RowBox[{
RowBox[{"q", "=", "y"}], ";", "\[IndentingNewLine]",
RowBox[{"k", "=",
RowBox[{"Sqrt", "[",
RowBox[{"\[Lambda]", "-",
RowBox[{"y", "^", "2"}]}], "]"}]}], ";", "\[IndentingNewLine]",
RowBox[{"normalizationConst", "=", "1"}], ";", "\[IndentingNewLine]",
RowBox[{"(*",
RowBox[{
RowBox[{
"A", " ", "constante", " ", "de", " ",
"normaliza\[CCedilla]\[ATilde]o", " ", "foi", " ", "ignorada"}], ",",
" ",
RowBox[{"isto", " ", "torna", " ", "o", " ", "plot", " ", "muito", " ",
RowBox[{"lento", ".", " ", "Se"}], " ", "necess\[AAcute]rio"}], ",",
" ",
RowBox[{"ative", " ", "a", " ", "linha", " ",
RowBox[{"abaixo", ":"}]}]}], " ", "*)"}], "\[IndentingNewLine]",
"\[IndentingNewLine]",
RowBox[{"(*",
RowBox[{"normalizationConst", " ", "=", " ",
RowBox[{"1", "/",
RowBox[{"Sqrt", "[",
RowBox[{"NIntegrate", "[",
RowBox[{
RowBox[{
RowBox[{"u", "[", "x", "]"}], "^", "2"}], ",",
RowBox[{"{",
RowBox[{"x", ",",
RowBox[{"-", "Infinity"}], ",", "Infinity"}], "}"}]}], "]"}],
"]"}]}]}], "*)"}], "\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{
RowBox[{"normalizedU", "[", "x_", "]"}], "=",
RowBox[{"normalizationConst", "*",
RowBox[{"u", "[", "x", "]"}]}]}], ";", "\[IndentingNewLine]",
"normalizedU"}]}], "\[IndentingNewLine]", "]"}]}]], "Input",
CellChangeTimes->{{3.879687484492347*^9, 3.8796875285181026`*^9}, {
3.87968756428339*^9, 3.879687579086026*^9}, {3.8796876425269623`*^9,
3.879687643089506*^9}, {3.879687705290783*^9, 3.879687729055542*^9},
3.879689036213003*^9, {3.87970324379077*^9, 3.879703340080243*^9}},
CellLabel->
"In[256]:=",ExpressionUUID->"a5522605-a585-4826-889d-d0a0d4eb6773"]
}, Open ]],
Cell[CellGroupData[{
Cell["Composi\[CCedilla]\[ATilde]o de Square Wells:", "Section",
CellChangeTimes->{{3.87968875870269*^9,
3.8796887652271547`*^9}},ExpressionUUID->"4f7baf4d-c664-4e26-b7e7-\
dfef31f1135b"],
Cell[BoxData[{
RowBox[{
RowBox[{"a", "=", "3"}], ";"}], "\n",
RowBox[{
RowBox[{
RowBox[{"\[Phi]", "[",
RowBox[{"x_", ",", "n_"}], "]"}], ":=",
RowBox[{
RowBox[{"eigenfunctionFind", "[",
RowBox[{"y", ",", "uEven"}], "]"}], "[",
RowBox[{"x", "-",
RowBox[{"a", "*", "n"}]}], "]"}]}], ";"}]}], "Input",
CellChangeTimes->{{3.879688768686097*^9, 3.8796887796822042`*^9}, {
3.879689005416511*^9, 3.879689006203685*^9}, {3.879689084285778*^9,
3.879689146125676*^9}, 3.879689318900062*^9},
CellLabel->
"In[182]:=",ExpressionUUID->"a5bfc17c-1915-4336-a963-0d0b96e8a46e"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"Sum", "[",
RowBox[{
RowBox[{"Re", "[",
RowBox[{
RowBox[{"Exp", "[",
RowBox[{"I", "*", "n", "*", " ",
RowBox[{"\[Pi]", "/", "4"}]}], "]"}],
RowBox[{"\[Phi]", "[",
RowBox[{"x", ",", "n"}], "]"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"n", ",", "1", ",", "24"}], "}"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"x", ",", "0", ",",
RowBox[{"26", "*", "a"}]}], "}"}], ",",
RowBox[{"PlotRange", "\[Rule]", "All"}]}], "]"}]], "Input",
CellChangeTimes->{{3.879687739464056*^9, 3.879687818412792*^9}, {
3.879688722827363*^9, 3.8796887230038767`*^9}, {3.879688794052946*^9,
3.879688817042506*^9}, {3.879688892525256*^9, 3.879688912080489*^9}, {
3.879689066421802*^9, 3.879689066866095*^9}, {3.8796890976888227`*^9,
3.879689099386505*^9}, {3.8796891404688187`*^9, 3.879689141257781*^9}, {
3.879689174237747*^9, 3.879689280114216*^9}, {3.879709339363738*^9,
3.879709403386826*^9}},
CellLabel->
"In[206]:=",ExpressionUUID->"3b6a13ba-987e-486a-b8e7-27e3bd85c998"],
Cell[BoxData[
GraphicsBox[{{{}, {},
TagBox[
{GrayLevel[0], AbsoluteThickness[1.6], Opacity[1.],
LineBox[CompressedData["
1:eJwUV3c8l98Xt2c2hey99x7PPcYH7YxUIpKRPaIUSZJSspK+qMyyS0KSPhcZ
lbKzs0mIMjKSfn5/Pa/ndc59v9/3fe7z3HNEnf2sXKkoKChamSko/v8coVP5
4m7URHzaLZ5rO+1DsBUP/DDzzEV07RczWVwDiOeUzF78nuXoheOxkf2GQYRt
iYwjRwYZfdCM0MyMvUhcVciRpfFsQGwFjYk33UIJK6qynKtRH5Do9WBS4dhV
QqqvVvDP41Yk9M5XST02kvjb8+3Am6EOJFulMFGefIP4ZrTIsOHRjXDwBW91
gRiivfh3o9ZaD4qTPaZyXvsuUb1nOzIoqh8tWOpQHvmXQORG0kIZxxB6gWIL
ZpruEXE/dv1dfDyMWo8Fto1RPSAMFJi+7k4ZRXJY7YJxUxrxYuzum4qhMcTA
b+6sLJ1BSD3gSLMRn0B7hX6qVQpnE+kH74cse0yi+Bu625d2PyHYqfiOJ5VO
oe2Zsj7rmHwi6tVDTdW1adTS9uN5XGwxseEtwt1uOIP2tvVETKSXEr5iuUu+
Ud/R1ZDcKT3rl8REr3QHS8ssKjjZzrsvrJI4cbfoeTHHPLoSe/7TU9lq4rOx
ctyBEz9QoWAEWvMnE8brZd6zjxeQ+X2O9y8r6ohXJVoHYqYWUaYTyV80vYFI
Uf3KzZ3yE5n7Tti1bTQTR3cJR53V/YWK+m68S5xqIZi/OS2XDf1CH3JOR7/V
ayea6rKdqSKWUGi4a53qeCcR8XCyw1J8Gc0a0Ba8W/9C6F2UMspqWkZKEaay
GQn9xKrludKfHiuo6aLkrxnyV6JUoVAYWFZRt4C0r+DhMcKTfj4uvnQVyZs/
sUsTmyQkxhW3h61/I6ERPqskn2/EcI2fj9Lab3R41SvZ1XiO+O/Bi6EraWvo
VklzQsarRcI6cPnAZ8N1pCAn2vz2/BLBekjzjcDYOqrIlLmOQlaJ99IX5byj
NlBMdOHj3X/WiUiq16lvpDfRxTRKwXn2v4Th100G5pZNVNdptTk5Q4HWXxmE
2Pn+QZstdkbdxdSoLCn8WwHHFnIq106ImaRD3j61thvlW4iG50bHcjYTkrag
arI48RcFfTybwr/NisbFTDX/+/MXWfulDLbRc6KHf2/kfnu8jfS3b3EVbXIj
275mLm3jf4jbYPfr9XO8iOMl4/XoqZ33wSNrM24CaLpJcsPTlAKOriYnb90Q
QSblTaWcKRTg+aOTAeuKo8ws93PV3yjg96XDx7NPS6HtOAYRZ11KEKBDxVL0
cuhUWEEv4x1K+GTPRO60UEJVHvvjXwxRAlfgqP7Jx6qI5/ic2UklKgADU8XV
qxoo0DR2myKCCp4NPwhTHdBG7aqKlfkdVPB4Xyh6X6uPFIVbfY6KU8MTxW8V
tpKAbu/yk1wPogYFgbLl/R+M0cwG29eMJmpITmM7/nGQhEjfSpPNeWmA91fy
lxnffSi72/LgogcNqEQ/Mnj+4BAyi31pFVxPA6O/hP599rNE3014Tv7hpwWx
+3uvucbaoNg/FxyvnacFmzM/WCW1TyCVl32u9J9oga/lNb1XjD3q8tTzvitB
B6q7txzj2p3QBbGHgVxX6GBBl7mwuv0s4h/4G5L6hQ7+Go2+2Drpjt4mOl4V
VqKHZN5NyZYoL+S0r+7Gk2h6CJ2tkfmr5Y9oKMVj5UfoIbPkZ1Pd3vMoryoq
6YU2A/RfVJaqirqA9vtP/6edwABv6GxuXYy5jBakLTLezjDAZv37+U+kqyhx
pOCJiREjLOEzZYY+kUjjAXPxh1RGUIz8Z8/26gbqO+xTdmSJERJ0Nkz2PohB
YXRtVV/2M4EZf/FVFZk4JExWwadymOBtu2vwckMiqg9Oahz7wwSM9XH9NT+T
kZviSou7DTMwHX8a7FLyH2KcOtb5o5gZLgcPxTRwP0LFD1/1nafdBdn3Y9QL
xbLQURu+kQ2HXbDK8yb1imouWmYOnbpauQt+8KxL0nzKQynvhuZo2Vhgevbc
ljxzMdILJZbuuLOAcnf+HvnoUvRVLXOdo5YFeMYd/rFfeokiZin/PeBlBYrv
NUrPliqRRPZZWqEAVhjtJ/GzML9BzScbmXM/sMJN8bbIyGGMPDmkOeXE2ODm
8IVqneZ6xPrhFm/pZTbIcdUT5RNtQi8iZoW0utjgzejmSQ7uj0hO4CnnMA87
PHk+HGmU2Ypau+j5XHzZYc6U/qx0VxfKfK4jkJfGDqUSQefV/31BAXc8hGeb
2CFu/Ciplr8PcZu0SPoLc0BnM63kHv4hNC20JfPyAAdEaW5VjW1+RVWbCgq/
L3JAA5WmnUrjCLrd46Csm8sBl1PD8r+8GUWnyuLUwto5YEuMyzn61hhSiMOa
eIsDypyae9gtxtG2x08dKllOGLEUcpraGEftJFED0jFOEItZyQh/NIGyRa3Q
rWuc4Nx9ffKM2iQK+htp3FLCCYpl7lHCVZPIrP8liXWAE34lnlKzVppCvBWT
FpZ0XDDGHmSRmzyFvifwHExW4wL1D2lMTbNTqNrb7EjvaS6w7OUfvagyjWIt
Llrx3+GC1TnOqBuu0+i0RP4xh1dcQJ+Sr9AcM41UKPpPZE5wAevpkXzRR9OI
aojRfoKNG7it/gZFZ0yjrld6jlIG3FBY6dO4nDCNcu95OXuc4wbtl3y3ggKm
0QW/h67Fydyw8VvTXsRoGlkc+HxusZYbIsPuROylmEb80tteaj+4Yabcoirl
2RSap1L2C+bjgYorflJtB6fQ22HHwCoSD1Qd/iPMOjiJTiuHJ+3y4wGLr0yC
lc6TiCLiYZnTfzzwTnjrKePXCZTVXt1ZXscDKcbiUk77J5CxaP8SwxwP+Fxk
uMZXNI4mAtY4Hbh3w/3isq+P/o2hqHoe9ReGu0Er5a6Dg8UYajprdf5kwm4w
y2X9NeM/gtzL/e+VvN4NQ2q6kjl1XxEDbfxLyondIFGcS5rZHkQHnrYsF2ju
gcCQ5/LVJn2ofcY0aHNgD2zILJ0K52tHAbpnkw/T8EKSRNF3j4kWxHn7Wnm2
Ii9E0fNsxM83o5cDGd2/bXmhUL3fYv1GA7KRJ6/sj+CFLxsbB0TT69Bq6BB3
RgEvmC8fOv5Ng4xSPm1qLHfywoHZEI/S76+RjiDfMfMtXqj55lX2Wq8S9fto
B6dL8sHpvI9GnzleosvkY/cXD/MBd12o69dTpUiALajCJIQPdE6U3BHnKEZv
HZO+PMjiA4VRi5IPXPnodGnp6tzHnfUWR+4/zstF/yjaeGCFDx6bVOz59yoL
ZVr+0EwW5IeMD/K7fN0eI6NsZtsZM34I/xs/rMCdhsaXZC8Y+PNDDyPao+CY
gq6bWKQkpPKDycjRUxyq95BEslvlZD0/bFMdfvP8QgJqnIzq0Znnh7NifyVl
UCxy08z5HcuzF/76PHlhon8L0UfX7R4j9gJv/X2WsA9RKL9nREvz3F6YQfe1
d325hvZLb9vGJO4Fg++1K6T/wtHcRYGLX6v3Qgb4bS0Ql1Hse70HqpN7wdp3
xXDg+gWkxHfy1Q0WAYi+Ll116+h51OZxsbdfSwAsUzeZniX6I//q+2uKTgKQ
/dNLPcTHG3Ewl++JjBGAQ13hftvO51DZqU7tnjIBGLm/zZw454Ksi38elxsS
gCwbpg2LpTNoZYs1JJxWED5Mtt/3+3ga3T+k+F+nkiAs/PdVY83DDmk9PlAl
dUIQztrT3GrIt0V9Cx59l68Jwp+1d0Xq/tboErq13looCE+N59L7io8i/oSn
vOLdghCixKXE/fAgqhlt0Ln4VxBu5XEf2bxtgRxUJ060SAkBFnX5/pWFhLav
UV4SPioEb72y8irYjFFGp3Dq+UtCENPo4Te3RSAQJ143ZwtBrffYMum+Hho7
b9+/95MQhK6tH5n7rIUiGy5v+K0KgRyr7TXOBHUkzpPK1yAkDHxD1UXK71VQ
g+srXV4LYXj/aCpk66MCcqv8ctI7QBhIJ70eab+UQfT0K5dq04Rh8lvxsLOK
JCKa29lI74ThCj9vuq2+GLpws+TJhzlhaNq71TDpKIx6xBsFpZlE4MOx6riF
bX60dP3lOQ8hEcjh/+3uqbcHsU5mvSxSE4F3DCeaIre4kKxpwvYPMxEYT7TQ
8VXjQKa54ftUTolAZ2sNE+1/LMiJxic50E8EouKPUj67wIjCXE6NlF8XgZHp
kcFvM7ToQcM+ubUHIkD7pvQQ/wAVKpPQCdYtFoGH492DsToUqDVKqja0VgR4
Di/aUsz+IWYnuZnJ3Tt6ikP3F9GsE3QkaluK7yJA7jgwGF24Qog9+ZVp/FcE
DqK0Zcn3vwhD2tG5KA5RCBz7xZOTukCccG3VapYUBVopycQjNrNEUGPNNUY9
UfC462eTmDdNJEgWfTpwWBR+i3qmCYRPEMU3UvfEOYvCo46SwMeNo8T7qZvO
7RdEIcieTuzJ0BAxQbpQwnlHFLzECoeOfOkjtp+4rNtkiMJ6c6P1pMMXgp/O
2uTBS1HgOifTdMC5k9ByM4rrbxYF6ok4tsvZbYRlk3L/3iFRoGJTKyzVbiG8
pYQkTv8UBReKXsj2bCZuRe/yy6QRg5MVZ1vMJRuI3OnN1+O8YpDjP1BSbFNH
YLPvNJKKYnDuoPFbyo63xMDT3iPuRmIQoWD2JujJa+I3XVNawTExiMqeKb3J
WklwupdPzXmIgRPXirnPWhmh2JytohQuBrfakuYMDpcSFtKJof5JYqBfVvmP
h76YcLl5tansqRgMTQcxCnPnExHffDhWq8Ug9Wa5QVlxLvHQ3N5eu00MGHw2
YnjeZhFVefvzLk2IQcWzVb/b5x4TXfS6S2/WxKA753uSGH0aseAubbjNLA6/
YqrICQYpBNN7nlsgIg7nGV1shpaSCCkZmq5IDXEQfXQqYm13AmF8a0mw0UIc
YjONHmWp3CFOz4yeo3cQBxOZrEPT7dHEJYu2l/sCxKF90YLeZTWSSM5/u33n
hjiELtykjGC7SpQyFO9rTRUHResj+3VmQohP59KS2Z+Jg1Hr83Fzy/PEt/e3
RqzqxWFB78bVZBtvQijGNbh3Vhze3ViLODJgReh9t67l+ycOm758rwxvMxLH
9hkz23NJgNPDa/eYDS3JsYzCWaP6EnDq1ukY0fNe5HwPlnmxoxLwzv+N256+
QPK7D3+0XF0koFde5krn2RDysOzstbwQCbCRKnw8FRZO3ozp+/Q9VgK+inli
65xI8u7Zpj0KWRIgOJ1nrx0UTVbbX+HsWyEB9jJuU3rNt8mHC3NKSj9IgNwL
11KfiniyB1PS+tJXCbhW6aH+oiSJvPuRSu/8sgSoKTa0zeukkBuU2yqmGSVB
r12GH59KIwfU+ySPCkvC+mf7d6fVMshCx3adH9CUhI+pAVenfbPJLd8KLbsP
SEKm8GnrU/VPyCGX96m0npEEDV1MRxQWkCVZZljfX5QEBTstE3WjZ+TOjOgf
dXclIcwSr5t2vSBfVZP89CZHEqh1bV1v/SsnKzS+K6x4LQlzdY6VDG+qyP3H
nWOet0nC5cNZHfrCb8nRsxTnCqYkgX4iToVZso6sfiXDLOePJPQl6fB4KzeQ
R9kIyUccUkBz4A+Ev2sm380eon4gLQWx22uZhRstZD3N0PEEQylIyN9cPnax
nfytma/utrUUsNDSmMo6d5GT7aoyojyk4F8i9TPNjh6y0Q/b8PCrUjDyR+je
t8EB8sLVVfuQ+1Jw4KECe8ejEXI6Z7J+YJEU/H21l+Fl+jjZ4okav3edFMxn
ED3e36bIv7U71l17peDmxD/HxPffyTkf/Xodf0iByCmeow9OLpCPOrBWnqSW
htTSipjOoV/k7cXiZGs+abgiKlRURrdKLoo8cP6QsjT0i9snUtSuk0/wzFqa
k6SB+3uFpLjYXzJt/i0Vo1PSoJLhGx4hSYnL9KTZ9AOkwbhLQHpaiQY7fm78
oXFTGmqPHrixUUePdzm5fFJ6tBOX+/NGYI0Zv16iKpJ5KQ3rFvcrrwWzY7cb
WTFiH6SBx/WJ0RtHLszFC+cERqRh4kKRtWDrblxbOGy2e1Uadve2vWPr48c+
hlck2Zll4FDFVLJwqjDmb99LwyQqA148iYFf/xPD752rx6m1ZeDOF1Mu+klJ
HLx6ou7vQRn4aBdvHNUgi8VurWWsOctACku8ZrONEm7nTwn/FSIDLwZv31vv
V8VXSjQc5uJkQNo+74Q1tSaWgy79qVwZ+Md5dYymRgf3dgbwj1TLgM/3ink/
QUMc5cq+0dcuAxqPrvG8ETPCquvPejunZWCpLZ4pW94UD98+VPlpSwYabmT5
iJDN8R3B+eQmTlkg0wZ5JC8dwDqlt8/XysgCV97Jyz2BR/GUsaxVNSELv/la
3qbYW+OkL80q5Tay8NiG4PX8aIvROTe2Z56yEHXc6l55lx2e36RZyIuQhf37
JKq27znitLs5n7JSZMEgEZX23XfG5iLGRenFsuB0pcT10qgrXikbjblfLwsz
E07ex2o9cDbp6rn4PlmgeS72bOCILz7SJ2gesyALMYFTRZy9AXjLs0byOo0c
yO/SYpj9F4QL/trRXOGXg/uu2+MUVSHYNmFj/IKKHDSEkgcreK9gavH/6vzN
5EDz+oPJJeFruLRCK9PTXg6MYphfnZKJwo1UB1l++MuBn3TwyVshN/HAkTOX
/W7IgUJ/R56gzR28+PDCt1+pchCkSx9L2xmPaWbv2AQ9kwPzx1JMF6OTMJ92
Vt3vejlIlatcXU68j5WiKpUu9cqBVlWwb7xgKjbuaEn/MycHib5JtieIR/i4
0BhDOIU8cLMcb/egy8LeXr+DKXjkwfSS10ZTZw6OqGKeiJSVhzmz6ofj3Hn4
Pq3oUVpCHr4rle7aM1qIC6203t60kgfp/b9n5/c/xzjjgByTuzwUFe6JaNcu
w93zTg9iQ+Vhbbmc0UmrAn/XvUDDliAPnWkXlBfKqvB29J2AxFx5oNHm8Vap
r8Fc3ZnDXK/loRH7fxIl12IZ0coDKZ/l4S6d1r1H4e+woW9LFe+4PITW1y5O
lDVhqzejkum/5cGhIJzpr89H7M7wO0mQWQGy11lIywWtOOwYM0WmsAJMBHYw
ZgZ24CeLmgO5FgogEqy/NnL7C642OGAu7aAATKK3LHoie3FrjFN5QYAC2L/5
8zLPqx+vi9+Je5amAPKhucubTF8xS0DmH5XnClB5fs9FaTyMxcgV516+U4AA
s98b9cqj+OCJUeOqeQXg3Rtca1c6hs88WX2uR6kIngevxbU4juMLS0yCb3kU
IWYSR7lRT+A7SOQ2klMEjZtgVJ82gTNjNdfqCEWo35tAuiI5iSv697uYWu/E
PW5oEjmT+KOUU0eTuyLkXWxnL+eawsPng4l9YYqg9ETaPeXCFF6uvV3UkqAI
/V0/o5+0TGEG1kzew08UwSjX4mkh5zQWOFVxo/21IqRbHqILOTCNVfM/Llm1
7vAFp7B/D57GZqsjjl/GFWG2psl3PHEanzJe/XR8TRHGHGQErDKmsX88k94A
sxLYUu0LUH48jW8MCefZiyhBVMFd2dC4aZwmq8k9oqEExFK1M/Kfxs8v7L92
Zp8SNAoHpsSbTOOGd44LEw5KUMaRd/cWwzTuYw8+5RaoBEP79xze+brxD4fb
72eilaCDopVy97kpTFWUoemVrgT6NI19HNRTePd6efaP50rQLVQ5GZUwieVJ
H9n8G5SA2lRjsYp9EkPSSNhSnxL8zJbeTxE1gY+NrHwP+qEEzRYtaRWz49hT
gen4GqUyfIw/nKFPGsfJTRqqW3LK8EdortKrdxQXcO1/HI6U4f3Bbh9K9lFM
dnJkprRRhiNRDBxXwobxt82YKdoryjD0eNAv588Ajrt8ZBrdU4aQf2azTOt9
WGOT+9ulAmUYzu9Xjx/rwREbGTM/vijDlbtvqw9GdmKpS67fpeeVwZvRHHcb
tGO3MJ5VFUoVMCIyOD16W7CeQcjqoV0q8Gjq7ERPejNm2RpY9dyjAgXFIWPU
tA149I3h75tiKsC85HhocqMWl4dm/s5VVAGF7oe3LnyswTf1qdfqdFRAed8Y
L4tnFbb747o2bKICGx0PuijLy7Him/drfw6rQIf6PUG/uBeYIlR+ndduB9/v
EDVuKsHdenHrmq4qsGY29v0cFOC8zZ/rVv4qcOBsb4eF5xN8udp6wy9UBYgM
TaNU2Wx8+HLlRmy0Cjy/LS1ypO0xFtXj2yxIVAHfAlNGL7E0vLIRutn0UAWO
hQ3xTMun4ObXw5sTeSqQzVtI5m1PwmmXjP5QvFSBw3e1SFKL8dhHN/ePIFkF
ZB0/rywJ3MGwQbel92GH37aWcZn+JuZ67bF1vFsFLjOw7C+8dx1Ph3zaChpR
gXdNx//+zYvA1TrKfxNnVWAi7bk/35kwfHc98e+zVRX4qaC2D3RCsFPVyt8W
ClW4OW323qMqCGuEHN+eYVaFu9xv78t9CMD0OtXbtHtUQSd1qoi92BcPrAn8
ExNThec9Qje/pHvikldX/yFFVfjqs/rBguSOIy6O/7PXUYX3z0BPONEF22iT
KC6bqILce92Pl72dsfRaHsWDw6ogYX5q0e29E96sZKIsP6kK1dyMsaNqjrj1
gg9lh4sqxD80si545oCztNopF/xUgQwB0vc27HHQbzUq5lBVsLRLdHzG6oDN
K+9TyUTvxK/7mMYtOGD+C+tUpERV+HjXi/tQhiP+oXmK2vmhKtTUpB08tfsM
rl19S301TxXcmrUNDnU743sVIjQPy1QhT3GJyOVxxW7B12lev1WFNT0DUcFZ
d6ynOU3T814VOGXG3S+6emGWVQva5S5VcKCNFPqX4YdHy4to2UdUIS5NVi39
VCAuD2KlU5xVBZPbakWW7sH4pkYA3f5VVWhbEN48y3AJ26100blTqAG5yMlJ
8sQVrFiuRR/FrAbi0vtYbPWuYYqgVPqs3WrAmC1b2AFRuEt9i54sqgYRIW/p
s7tv4qfLpxkGFdSAv7914i1rLL70so5hXVsNLp2/rGUVnYAPnpdg5DFRg1/q
0rH3Q+5hEfWbjGqH1WDTtMyuaikFLy99Zzxycmf9ZT2V7V3puKnsIJO3ixr0
oDpOhskMnBb4nCnGTw1cDNvFWz9lYx81Tuanl9Xged91yg9yTzEsBTG/u6EG
o3w8lefFC/HGIXPZ4gQ1cHfkR1+qn+GyAj7z++lqMDa36hrAXoY9aeddwp+q
wWexu09WDSqw+BlypPuLnfgnvu9H1qvwUE1C5tEaNThZ7XY69dRbnMx7lqzb
rAZSGFnKGdfhQ0GaQ2KdarA34JdA2v4GTNdOv8n8VQ1OX32zem2wGZPlB/as
flODMpMv8V93fcIXbxZrDi+pgfER42G/K+1YZSLcuvmvGgTHrtGfONuFZwjL
gFIGdZhiatYwS+vBLSVpMzYa6iAZHHnU6uwYjmL0oSOQOsS7V2wPt4xjA1ck
Ib1fHZryonRfSU3iZwKTjhuO6pBCqel95vk0dgupvDLuqQ5q+kEedoPfsHD3
rfSWYHWwG+iwXVidwQl3FHsf3VGH/4o699Ysz+J93/6tRKeoQx+fpl7klzlM
ZdLJ6Z+lDnsyVae2sudx9eNclZPF6vBns2hfyqkf+PzmhcPGr9ThUDh7a/P2
D6xgu89bvl4dcpmDg/hjF/Dki723uT+rQ7j+SVVp6kX8iGUh72/vDp9Lk9aD
s4vY1qO2cXpcHV4X/acuUbKI2RqTJtp+qMPsXH30fyOL+L2IK+XrdXXg2HXO
rW1zEUeEaQtnU2uAtG7JZvn2ItbtYzS8w6oBbIGq3mZzi3hJfcguiE8DtHuE
pxNrF3Fh/LMQBwkNoNEYvFMZvojPzkWkmClrwAen/c6TkotYwNy6XFlPA37P
fVGwr1zAX7IlO3lJGvDttQrhp7KA47bXFimPasDxLRbDq8k/sJndR5Y5Ow1w
a10c+js+j/9VPJTvdtWAWE/jO94C87iKw2/fW38NcLxCwWFvNIf9fYzcn4Zq
QHewpKy31Swel5jODknUgHtTx36V68/g9Iiq2jMPNeBc8FjUeZ5v2Gbo9vD+
PA0gl6Qecxiewo33lPkF3+7oOfgya5/RBA5fpNShe68B4Tf0NtW/jmGtA93H
Fjs1QC/p4fQe71GcT3UpsW5GA+ayHyZytQ5gp9MHnhcua4AlUTWSUtiL+aoF
P9/b1gCfronJvuBu3MnzczaMURN+nMxl2XbvwLcD6hncuDUhxDx+z0D6Z2zy
OVnqiLAmcHWSqQeUPuAtGXdTHTlN8O6RXtT2asTlUbrOopqaoHqb9Cdbux77
jDJHMIEmXFyeU5X6S8Z2qXxT2vs1oU5ZKxGeVGMzK+n9rjaasDbCb2nwvRKr
M2s+TzqtCWf3u6bCy5dYpMGYu/acJgy4hz2P+lmKd105eulHoCbYHpKVbBAt
wRuap4f5r+zoKfWgmN9VgKcXvEwsbmoCx/0c/8zbT3Bn3qX84ERNiK+7fcAu
OnunH7jJkpOuCV8vKOz/NpSBi/juB7Y/0QSvwTnRa+7p+L/O7N6/zzXhusau
eu+kBzjqTqmBfLUm8LAxvCTMk7G/KTnrRIMmUHcd1y0LTMQOf1vools1ITLJ
VSeAIQ7vr+z3etmnCe833yWoDMZgLb9v7aPjmnD4xLKKOikai8msarL+0AS2
etKrcNXrmG2MKl1/TRPuhuf94oyLwFup7BQelFpw/sWCIOWDMDxjJeSawqwF
8/3eTwVfh+BuZoWP73i0IKs6M2zIKxjXNegq/xLWAuGra3Xz6YH42RXzZCE5
LbBM0Hg9oOOP07SObRzQ0AK7k4asjh7eOHrR+fQlQguae7moEL0HPp/v/+6p
hRZweufZ3tZ2w05nwmW6rbQAThvmt34/iw/yx96ldNACvxbtxUR2Z6zblbqk
5K4FBydH86mznLBUbN5x+wAtSLc/JxUq6Yg5SRU1MaFaQNHPyiWJHfC/v/Wi
r25oQZOuTmM3nQOer2yPnozXgo/0/hvW6/a4z294jiNNC+44WPQeuueAG2Xm
j6JcLdjPvE1xaPA0LhvbqPB+pgU/blVIzng54cdp9HvTqrTgtxL5gP7HM/iO
NU9Ec70W2Ff1uWUlnMUhu8SnVj5pgXNsSUPYB1fs0qiyX6xXC+6++3Dg87Vz
+Gg48fzImBZcDra7FfbBCxtqH+S+MqcFyIH1XfVLPyz38+SlwtUdvdx2Wa/k
A/HuAvfh3n9acODKU4mRb0GYyjnYhJZJG+xbtRashULwIv/1fDVubVicmA0b
GwvFQ10JLE5C2vBuZsDRTCICv499HHhXRhuSFknnmSojcTmpuLdaTRtY/ecp
SBU3cNb2a4MZA20w6O32D1ePwXGvmrN4zLXB5HG5gBTpLr7s/4XOxFIbKtM4
F2goE7Gb7ISX/ylteGFlnvOz/h62Hv/Z/shVG8RfVs9fXE/BkL6t2eKnDd13
xwedytOwgs2u9PVL2lD3TrLg+q4MzMvCTyEVpQ3nedORJEs2pm2SdrWO04Ye
/yTunL+5eClc82PEf9pw5HN41I9z+XhY20T5WbY2sKmdlaQ9W4xbfh5NHizW
hhmy/p+Ua6W4quD0BsMrbQgz736rr/YS5zp7n9aq04YRu6PRitaVOHHv5Xdn
W7RBaq5m8/Xv17jph+OSd482tN48dI10n4y3MEn0wpg2fJ6mjBelrseqSfJH
r85rg8DbXo4k7Ubs5sJx9daaNtzMU+6k3H6PH2qtlSRS6YB9m1rcVc/PuIPh
61Aaiw6MRg/+W99uxwYl+Xol4jrwb7Fx+pXnFxxwNc6jUkkHLLoe6AfE9OKn
lkH/YV0d0D+R+Sc9pR9z/Ea/O47owDnaW+0aF75is/eSkoN2OnDE5YwEJo3g
sDRmm0lXHdjq8WvYDB/F00Tvi9+hOhBT+y+riGMcC3C8Hf0XrQNpXY8nuZvH
seVENhtjkg7cqVUkwnwncHTFLYLzkQ7MtFd8cqGfxDU3fX325u/o7UgIt0+c
xL9O2jyUeKkDAkuX3LeYp7CUgl6LIlkHAvmOsHzfmQftt4U3tT7owJOj+4o7
O6ZwYjutLHTrQLbGpcBggWnclD13fN+IDhAbdmWpttN4K6gj2mpWB3hk7Hdx
R+zMh+avKk6t6oAWq0Z843879z/fo0kXCl049fR3a3rmNH44F8nly6wL4dXt
SwkPpnHH23PGF3frQswv59dFV6YxXcLhgAhRXXgXXnX+n9U0NnDWyIxR0IUu
+a+/i/ZM4wAN/rYkbV1wvSAY9XVnXn1KR7GdbqwLioFU+Z/8pvBQ35TCk0O6
wMssxk7emf84ilpOPTuhC7Z7J45T3ZrEZlde3H51VheGbp36tLo1gcOOPHhd
66sLrCbB0hRnJ/AL0SszHy7pQuvlu8bJ1eN4etl5T1eULtz92FyrTLPjf5OF
2VC8LpRoHXthB2PY8j+l4Kk0XWBZWJHN8xvFNQabnWulO/npxxR0bb7iX6yj
lJQ1ulD4OfaNss8glhprVGFq1gXlEd2y0oB+nHgjMU7gqy5Q00cd2m/yBTcd
v/hWcmYn/iXP9xpXF96SdZhXWtaFZNqCh1e+tGPVLeO9Otu6kCJ3nruH5zN2
a5XZb8SoBzesPYjLL3fOaybrpf3cesC2fDTHaL0BdwSu5FkL60HefEWqzec6
TEca6LGX04PrY/lCrbpkbLCnltZNUw9Qm2LNYv5rHPD9iYYf6IGNx+WF7PcV
+OmbO2dDDuiBT530ff3wMjx0NyDpmq0enKh6TC/n9hxzOB2vu31GD4I2Nl3m
8wqxmZrhz3veesDazLbIn/UUh9GICz+6qAdj55UvUWjl4Bc9DIefRurBZ+Ru
s+dIJp7OXwh7flcPWHZajNbSdHykj21564EePJiQr+t49wBX0at67M/WA8nZ
Mt4jrslYTNtq5EGxHsT33J7iupaI77idPzZVqQec/p/PJzPH4ZX7yS1qdXow
JGyUJ/YhBp9urDCKaNGDZqOfnRai0bh5pefV5y96kBRlrC+wHYlVJNYV947u
xPVO3v98MAKnWvPlnpvVg3/R6df9N0Mx1XU9/sqVnf163mKgpg7BXmWnEqj/
6UHwP6lvt9ODcPdYGJ0loz60ZrGeyXgegA05Hoc95tKHI9JuIyGnfPFTwEtz
gvrwU+VM5EsWT8zuP3pOV0YfKEmvVETt3fClDMqRaDV9kAuP+PZQ5SwebxU7
1m2gDweuPj8uGeKED26btIia64Om0tT3L6b2uELR1cjPUh9qI/uODxmfwEIO
0a9qTumD46PNWdtOG3wzNk+RyU0frIt/ZTwdtsQ/37zPOe6vDydU3r5WLT6M
T85953tyWR90G/tLNq3243p+5oSlKH34sx1Cm/LADMvvV6CDeH1o2Os5mHPW
BCdfOhR2N1Uf3r31O/4zB/B2vu/SQI4+3MMHBSgTDLB7X/w5mWf6IPyft5vj
dR3cTv9iOLhKH/L6Z9LKGTWxnnanzbt6fSg5ITImx6qGc9yWP7J/1gd36m3h
ur9KeFcKt9HpXn14fOPL0sZ/cji4UfNV0Zg+vJXk7sjvksLDK7aKG3P64BUX
b6v2QBxbSITkmP3WB8Ybx9OV20XwC+tUvmQKA+iM/F2/PCiA+a9Xx48xGUD5
JsW1uw28OKpskFaZxwBqZth/5hrx4B9jW6FhwgZQaLnUpkBwYlsOoaUPsgZw
/+yRL9JH2TAGdG6PhgGkZUXdeDHChGX8nYZdCAPQ1fmje5KdHidlXLMpszCA
5bexfuYt1PhPa/bHf1YG4DdVnju2RYFdtt/BIQcDuCr+O6dA5i+5VXGqMs3d
AG66ftxzhm6DrO1ApzgTYABfL/lPiFxeJWfGSudohhnAr6RdDTm+S2TGGgu+
69EGYG5zefhoziI5cM4jvj3BAErXXIwZpOfIQ/x3aIXSDcBypcAh5tA3Mml/
cajXEwMwXnjegf9NkJ9d+vyr6rkBsOKeviHZMTJvwYI7XbUB2HxhYa4L/kq+
1sc2bN1gACVzsyXuFv3kWXpVm6xWA9DWk7yWXfaFbK1t9XGhzwCEjwYoLz/u
JNe4nQeDCQOYneZPaV1tI0umJFfG/NjBN7vqae3TQo5rrFDoXTMAaU9+V/OY
ZvLaSk+2BJUhmHcrTtmqNZCdJNZ5A3cZQoCgjVmYTR35ozVfPN5tCO09aiVs
b9+S1a/r0bKIGkJmRE1qwPXX5MjDLf9JyRvC3DPestfLFeR2PnsF0DSEm/JO
Xy+Pl5GFp+bxSWQIUmdPszASpWTf0ivW5/cZQj6nF7ftQhG5JpT1W6y1Iewr
Cbh8gzKfzGyecfmpgyHc6ajTp87IJdtxqrDWuhtCCUzwH3mZRc7/WpvVH2AI
Djqs+XKnHpPX8i01l0MNgZpH6Vj6dirZLGj8/a5oQ+Ci8nJs004hJ6Pz9lIJ
hvDkQQ6Z5lcSeYKJ5idKM4Rss9tTdnsSyGo9yddP5hrCD6+Qfy0ad8gRWZJ7
zj8zBNoZg+LM3mhym3dlYWyVIVRHjfqzbUeShXTMiaf1hsCsw2DULX6V7EPd
14E/GYKhm8rPX9sh5JrWc679PTv7dRNk5PQ8Tz7pejt215whjNLpc1yedCbn
q+wVkVo1hNeFMlvux63Jv/8UvUT/dvhqJtjzbXjIyUmfBwK5CLjpOzdYc/UM
MeFw2jdWkICW7jPpVRxehJrsIuVTaQLsFakcuzMCiYiVq/exKgGNEf4X+MRC
iDbMLtuvT8BZ81tp55TDCaE7WTVLJAIUzVwWjwRHEt62akd3HSVgsrYn28Qw
mngj+m5C0o4ADZ3UPSdu3CaYflhfRC4EpMvfVNRxiydOVk0ynfQlIOefesy/
K0lE/vXgx4EhBKS2DezxeXmf+H2YTi02cgcPRZmNuaYSJP4HjU9id/L1Hn7P
L3xEJE9Jn8QpBExfHVxQPJRFjJdWzfdlEqCbymRfIZNLqIbti1gqJOB2nN7R
MyF5RIT5ANeuCgJCT/JGko4UEa2cXnmSmIA2+Y8vI949JwSH/+ihDwTQj65x
nL5YRngXxLae6CLAySe1zPFiBVEdJOgc+JUA0b2711mWqwhGeLZ65xsBFOlM
Upe3a4gTzCjmyS8CEoK9O0P6aomnPW0C+A8BA/SyovVJ74jVLKfSPloEAV3R
LO1vmwhTn18mS2wI9sadOD7h9ZFI0onsZeZH8IFXI1W5rJUYo+bykpRAYFdt
9aqwu4NQacvZJpQQyAnekV+v7CbC0zSSTuggKB/0ffeIvY/47NooGWiM4MEg
zbOZlUFCQNX29Z2DCGafXA4QMxwlPLemDz6xRSBeqyTj+HWceN18cZTshKC0
72LwgdkpguEeQ1CfJ4IenYsRl4O/E7anU+mXghCMgeKw7b0fxBNZuXTmqwhG
n9XzflL8RaysVCtJxiCwUqKamVpZJoxrD9QT9xAYiCngDaU1IvHO0LETjxD0
7i2Ye7ywSYza+nwPyEOwldhn5LvvHxGi32PmXoaAQ0VyasqdCrGJoFz7twj+
9rdeWM2jRU9p8imt3iOYn+sQXL7MiIjv7I7mXQhg1YSqY5MF9Xy+VGMwjIAr
q5KfOYcD+ZSN86l93/EjzXrGtpYb0Tw4cFF6BcF4ToG1jycvehha3i3wD8EL
83wK+WoBxF/KysdICxBm1WV4bloEuYm9a77OBCDKcuGEy7g4Kku+eGGbDWB0
H4fOPldp9JdOQfISDwCxTpnyPVoeWVwa7VrmBziokRL/VFUFJc8lR/qKAOR9
cD76ikUdjTrsU/0uuSN3evcUi5cWUmj/O3JWHsAuYlsn3EkPhRiXxQ2rAJgH
6SlMMiDUUO5meHJn/FU/QXybNzJG7NJ757v0AZwMuibMQknoVGpb2mEjgA9v
r7Q6mu1DT5mj9n0wA9jdRhit1BxCS1d01k0OAvx5nyD5NNwSET/nn5ItAWoC
PgdE3bdBt52zjukeB+C529DJpHMC9XQfoym3BxAoWXo4Hm6PxMyZXio5A+gb
r27ffOeEfF+TzxS4A/R3ivmcen0WvZY/zy7hA9BAl6JNqemOaB5L48eBAPGS
V3/wH/ZCR9mHfPhCAJ45xarqs/ujh5EJAslXAKJPbMm5TgeimRXTFtbrAM9d
klQ+GlxAGu4bl2JuAcQpuXOwyV1GEf0lMjRxO/Xwr0N978PRpwPOveH3ANaE
R/chgUi0h7w7euM/gIwgvPXr8A3krNKiEfQYoCTsS48WZwx6ln11YiEH4CWr
3LH7V++iTW6NJI8CAJkp56g7donI7OYMTD4DSKRgesHolYySNh4uni4HODsb
WcNG9x8a9rJ83P8aoLHYfTe36UMkN0x7yAbv+Pv2+I3FzEwUfLT6T2vDjp5j
xTR5CTmott63cN9H2CFcLRegzUO7NMVPNrTt+P1qwKmOpwidyOulR18AAved
D5Udfo5y+WIrXw8A7N96IuyCy9DPO+CqMQrATdKen2KtRAbbK1zPpwDOOD3Q
Zl95jW75F9TLzgHwZ2SGHI0ho65xh4DcnwC9Zshr5HcdEjrGKSL8G8DQZSV+
XawReTY3tab+AdA0zbt2afg9qtQNvcJNaQT80++nbxKfEVWxskI8nREMenrZ
OUy1o8NCkwOMu4zgJsOAMaNwF0pN+C8misMIjLap83P3f0EqwZTfLgnsrI8T
qbEK6Edh3yrur4gagcAem8bjHoPo/UlPUz9pI8gtKCfUD31FjkRXlouaEfjb
Hhu/4DGKTB0lg65pGwGTUq5fqvwYkou4aPbYwAiiPtf9rhkfQ+xZH3jfGBmB
nGq6knfcOPpdt3eu18wIenTpJHSVJtDQuM/blQNGcO+jfMTbuglUR10bz2Fp
BBOKnB/TLCbRUwlOZyVbI6j7KJhzuX4SxZJcNA6cMoKTnme2WZWnUKBbJd05
JyMYykmz4oybQiduMvRHuRrBIZ/qJvORKUTk2xVleRoB46GvJ0LFppH4h+Ir
ZD8jqNJN+3ft+DRimN0+MhhkBEd6khp1w6fRApOl2PolI8hxVR+JSZlG3fI5
K9xXjeDUneRq58xpVH1wtUk1aie/LIiRnD6NMn3MUw/HGIH+a+PGx7em0Y24
VC+vOCO4b6OtyOE+jTyfzxneumcEU87hZDntaXS03ZD9yX9GwAnBUkwbU0jr
V/x43SMjWF+gU+4tnkICnOPlw9lGEFOp9qTeagpRqWvc/JNnBKJxn3Xp5ibR
N+vok7wlRuB0Lsl+MngSfQrqk9csM4K7nKkc+csTqOy+3LblKyM4vX64Ltdl
Av1XGdbuW2MEstns1FofxlF4b2v2nTojUNWOdsai48hlXSQ4v8kIxJ/NCBf7
jqF9fOfNG1uM4L/0E3O+paOI+9Se+e0vRqDQlU3+IDOMNkM9yHsHjYDrgF0f
8htCow/fJOiMGoHesexDETkDqGjYUTNw1gja9sTQ0w70oIR/L+jjF3fOA3FA
t3K4G10QoRkoWtnR7xbLxdTTiYyd88Onto3gepH/12cmn5HM9c2jVDTG8Nkp
5xeW+YBYcg+KCzMagzr/gVr6x41oqeHxqj6rMWzXhqmsJ9WjvqmfzSe4jOH7
gR+qqnMYkelM0oJ5jUFh9w3hn95vUK70fe8kQWPYdDobnJvwCt22+EY8FzOG
/2xFflxD5cjPQ5fjk7QxlHi837Xk+gLZ3L4zMaNgDEprn1ZgugTpFX2toFUz
BpnHFOrKLwqQyCflW2LaxrDHUe9ID9dTRPfjmh0yMIaI3/L463o2mmfpVrA3
MgY73+nJhUOZqENJ6l+ImTGsnLkXnUj3EFUeCem4f8AYhseN5hp3/4ce+n/M
KTtqDIM3WG7rVySjyESBC23HjOHnOSP6P58T0bkyX4t5O2OgIlmeIWfEocNd
tfyMTsaQ6kSEOp64jdRXOH9IuhpDU0PNu+TiaMTL44qNPY1h5qnD2dLo62hb
81Wio58x1Iu2G+7tjkCTtowuYUHGYPljxqqV8Qr6ePGUVuqlHTwO96qx3ZeQ
zZPUH+JXjWHqiAx7Y3AwGu7szX0WZQwNP4XGH3oEonMUu+11bxsDW8KKTFS1
H1pStOFqiDeGs4jHlDHcC4WdSvp4+P5OvQblCs9QnEN0Me3X+tOMoXDl9gUr
WVeUUMmq65JpDG8ffxaQnHJG/JMHfy48MQabtGvJQhJnUC7HnbxLRcbgRltr