-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathengine.py
628 lines (466 loc) · 21.1 KB
/
engine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
"""
This module contains functions related to the algorithm itself.
"""
import numpy as np
import traceback, functools, pprint, math, random
def centroid(points):
"""Returns the centroid of a polygon."""
n = len(points)
def next(i):
return (i + 1) % n
shoelace = [points[i, 0] * points[next(i), 1] - points[next(i), 0] * points[i, 1] for i in range(n)]
list_x = [(points[i, 0] + points[next(i), 0]) * shoelace[i] for i in range(n)]
list_y = [(points[i, 1] + points[next(i), 1]) * shoelace[i] for i in range(n)]
const = 1 / (6 * signed_area(points))
C_x = const * sum(list_x)
C_y = const * sum(list_y)
return C_x, C_y
def signed_area(points):
"""Returns the signed area of a polygon as described by the shoelace formula."""
n = len(points)
def next(i):
return (i + 1) % n
res = sum([points[i, 0] * points[next(i), 1] - points[next(i), 0] * points[i, 1] for i in range(n)])
return res / 2
def scale_polygon(points, max_dim=100):
"""
Scales the polygon so that the largest dimension is approximately max_dim units
Units are retained as integers, so there is chance for slight deviations in the points.
"""
width = max(points[:, 0]) - min(points[:, 0])
height = max(points[:, 1]) - min(points[:, 1])
scale = max_dim / max(width, height)
return np.around(points * scale).astype(np.int32)
def scale_and_center_polygon(points):
"""
Convenience function to scale a polygon (so that all polygons are approximately
the same scale in terms of their height or width) and center the polygon so that
its centroid is approximately located at (0, 0). Because all operations are kept
as integers, the centroid is likely to be within 1 unit of (0, 0) but not exactly
there.
"""
points = scale_polygon(points)
C_x, C_y = centroid(points)
points[:, 0] -= round(C_x)
points[:, 1] -= round(C_y)
return points
def triangle_signed_area(p1, p2, p3):
"""
Returns the twice the signed area of a triangle defined by the points (p1, p2, p3).
The sign is positive if and only if (p1, p2, p3) form a counterclockwise cycle
(a left turn). If the points are colinear, then this returns 0. If the points form
a clockwise cycle, this returns a negative value.
This method is described in further detail in Preparata and Shamos (1985).
"""
mat = np.hstack((np.vstack((p1, p2, p3)), np.ones((3, 1)))).astype('int32')
return round(np.linalg.det(mat)) # since matrix only has integers, determinant should itself be an integer
def convex_hull(points):
"""
Returns the convex hull of a set of points, which defines a convex polygon.
The returned points form a counterclockwise sequence.
This is an implementation of Jarvis's march algorithm, which runs in O(nh) time.
"""
assert len(points) >= 3
l_idx = np.argmin(points, axis=0)[0]
l = points[l_idx]
result = [l]
start = 0
p, q = l_idx, None
while True:
q = (p + 1) % len(points)
for i in range(len(points)):
if i == p:
continue
v1, v2 = points[i] - points[p], points[q] - points[i]
d = triangle_signed_area(points[p], points[i], points[q])
if d > 0 or (d == 0 and np.linalg.norm(v1) > np.linalg.norm(v2)):
q = i
p = q
if p == l_idx:
break
result.append(points[q])
return np.array(result)
def antipodal_pairs(points):
"""
Returns the antipodal pairs of a convex polygon. The points must be in
a counterclockwise sequence.
The format of the returned antipodal pairs is a list of (p, q) pairs, where p and q are indices that
correspond directly to indices of the points array that was passed to this function.
The antipodal pairs (also called rotating calipers) procedure is described in further detail in Preparata
and Shamos (1985).
"""
res = []
n = len(points)
def _next(i):
return (i + 1) % n
def previous(i):
return (i - 1) % n
p = n - 1
q = _next(p)
while triangle_signed_area(points[p], points[_next(p)], points[_next(q)]) > \
triangle_signed_area(points[p], points[_next(p)], points[q]):
q = _next(q)
p0, q0 = 0, q
while q != p0:
p = _next(p)
res.append((p, q))
while triangle_signed_area(points[p], points[_next(p)], points[_next(q)]) > \
triangle_signed_area(points[p], points[_next(p)], points[q]):
q = _next(q)
if (p, q) != (q0, p0):
res.append((p, q))
else:
break
if triangle_signed_area(points[p], points[_next(p)], points[_next(q)]) == \
triangle_signed_area(points[p], points[_next(p)], points[q]):
if (p, q) != (q0, n - 1):
res.append((p, _next(q)))
else:
break
return np.array(res)
def make_diameter_function(points):
"""
Returns the piecewise diameter function of a convex polygon. The points must be in a counterclockwise
sequence. This algorithm is adapted from pseudocode in Preparata and Shamos (1985)
and was modified to return a piecewise diameter function as described in Goldberg (1993). As such,
most of the code is identical to the antipodal_pairs function. The antipodal_pairs function is
provided for plotting purposes and convenience.
The format of the piecewise function is a list of (m, l, i) tuples, where l and i describe a section
of the piecewise diameter function in the form l*cos(theta-i). In the paper, the diameter is described
as a series of l*sin(theta-i) functions, but here pi/2 is added to i, so they are functionally equivalent.
m describes the minimum theta for which l*cos(theta-i) is valid, and the maximum angle (theta) is the m in
the following tuple in the list.
The antipodal pairs (also called rotating calipers) procedure is described in further detail in Preparata
and Shamos (1985).
"""
res = []
piecewise_diameter = []
n = len(points)
def _next(i):
return (i + 1) % n
def previous(i):
return (i - 1) % n
p = n - 1
q = _next(p)
while triangle_signed_area(points[p], points[_next(p)], points[_next(q)]) > \
triangle_signed_area(points[p], points[_next(p)], points[q]):
q = _next(q)
p0, q0 = 0, q
while q != p0:
p = _next(p)
res.append((p, q))
p1, p2 = points[p], points[q]
initial_angle = get_angle(points[previous(p)], points[p])
chord_length = np.linalg.norm(p2 - p1)
angle_max_length = get_angle(p1, p2) + np.pi / 2
# print(p1, p2, initial_angle, angle_max_length)
piecewise_diameter.append((initial_angle, chord_length, angle_max_length))
while triangle_signed_area(points[p], points[_next(p)], points[_next(q)]) > \
triangle_signed_area(points[p], points[_next(p)], points[q]):
q = _next(q)
# add to piecewise diameter function
if (p, q) != (q0, p0):
p1, p2 = points[p], points[q]
initial_angle = get_angle(points[q], points[previous(q)])
chord_length = np.linalg.norm(p2 - p1)
angle_max_length = get_angle(p1, p2) + np.pi / 2
# print(p1, p2, initial_angle, angle_max_length)
piecewise_diameter.append((initial_angle, chord_length, angle_max_length))
res.append((p, q))
else:
break
if triangle_signed_area(points[p], points[_next(p)], points[_next(q)]) == \
triangle_signed_area(points[p], points[_next(p)], points[q]):
# TODO handle parallel edges. Probably doesn't need to be handled.
# print('parallel', [points[p],points[_next(q)], [p, _next(q)]])
if (p, q) != (q0, n - 1):
res.append((p, _next(q)))
else:
break
# make sure all angle are consecutive
piecewise_diameter = np.array(piecewise_diameter)
for i in range(len(piecewise_diameter)-1):
while piecewise_diameter[i, 0] > piecewise_diameter[i+1, 0]:
piecewise_diameter[0:i+1, 0] = piecewise_diameter[0:i+1, 0]-np.pi
piecewise_diameter = [tuple(p) for p in piecewise_diameter]
return piecewise_diameter
def get_angle(p1, p2):
"""Returns the angle of the vector from p1 to p2"""
v = p2 - p1
return np.arctan2(*v[::-1]) # % np.pi
def generate_range(piecewise_func, period, domain=(0, 2 * np.pi)):
"""
Given one period of a piecewise function and the period of the function, expands out the
piecewise function so that it covers the domain.
"""
one_period = piecewise_func[:]
count = 1
while piecewise_func[0][0] >= domain[0]:
print(piecewise_func)
shift = [(p[0] - period * count,) + p[1:] for p in one_period]
piecewise_func = shift + piecewise_func
count += 1
count = 1
while piecewise_func[-1][0] <= domain[1]:
shift = [(p[0] + period * count,) + p[1:] for p in one_period]
piecewise_func = piecewise_func + shift
count += 1
return piecewise_func
def generate_bounded_piecewise_func(piecewise_func, period):
"""
Bounds the piecewise_func by adding upper bounds.
piecewise_func must be in the format of (m, l, i) tuples as described in make_diameter_function.
Returns a bounded piecewise func in the format of (min, max, l, i), where the interval for subfunction
l*|cos(theta-i)| [min, _max). Note that the half-open interval should not matter as the function should be
continuous.
"""
bounded_piecewise_func = []
for p in range(len(piecewise_func)-1):
_min, l, i = piecewise_func[p]
_max, _, _ = piecewise_func[p+1]
bounded_piecewise_func.append((_min, _max, l, i))
# special case for the last subfunction, the maximum bound is the minimum bound of the first subfunction + period
_min, l, i = piecewise_func[-1]
_max, _, _ = piecewise_func[0]
bounded_piecewise_func.append((_min, _max+period, l, i))
return bounded_piecewise_func
def generate_bounded_callable(bounded_piecewise_func, period):
"""Generates a callable piecewise function from a bounded piecewise_func as defined in
generate_bounded_piecewise_func.
"""
_min = bounded_piecewise_func[0][0]
_max = bounded_piecewise_func[-1][1]
assert np.isclose(period, abs(_max-_min))
def func(theta):
while theta > _max or np.isclose(theta, _max):
theta -= period
while theta < _min and not np.isclose(theta, _min):
theta += period
for p in bounded_piecewise_func:
lower, upper, l, i = p
if np.isclose(lower, theta) or lower < theta < upper:
return l * abs(math.cos(theta-i))
return func
def find_bounded_extrema(bounded_piecewise_func, period, domain, buffer=1):
"""Finds all the extrema of bounded_piecewise_func within the given domain.
bounded_piecewise_func must be of the format described in generate_bounded_piecewise_func.
"""
bounded_callable = generate_bounded_callable(bounded_piecewise_func, period=period)
maxima = []
for p in bounded_piecewise_func:
lower_bound, upper_bound, l, t = p
# need to get the initial angle within range. Since all sections of the piecewise
# functions are abs(cos(t)), we can add/subtract pi until the initial angle is within
# the approximate range
while t - lower_bound > np.pi or np.isclose(t - lower_bound, np.pi):
t -= np.pi
while upper_bound - t > np.pi or np.isclose(upper_bound - t, np.pi):
t += np.pi
if lower_bound < t < upper_bound:
maxima.append(t)
minima = []
minima_candidates = np.array([p[0] for p in bounded_piecewise_func])
minima_ranges = np.hstack((maxima[-1]-period, maxima[:]))
count, candidates_base = 1, np.copy(minima_candidates)
if minima_ranges[0] < minima_candidates[0]:
minima_candidates = np.hstack((candidates_base-count*period, minima_candidates))
for i in range(len(minima_ranges)-1):
valid_points = minima_candidates[np.logical_and(minima_ranges[i] < minima_candidates,
minima_candidates < minima_ranges[i + 1])]
minimum = min(valid_points, key=bounded_callable)
minima.append(minimum)
# now get all of the extrema within the domain
def expand_and_limit_extrema(extrema):
extrema = np.array(extrema)
extrema_base = np.copy(extrema)
count = 1
# first expand the extrema
while len(extrema) <= buffer or extrema[buffer] > domain[0]:
extrema = np.hstack((extrema_base-count*period, extrema))
count += 1
count = 1
while len(extrema) <= buffer or extrema[-buffer-1] < domain[1]:
extrema = np.hstack((extrema, extrema_base+count*period))
count += 1
# limit the extrema, remove all outside of domain except for one (for convenience in plotting squeeze function)
while extrema[buffer] < domain[0] and not np.isclose(extrema[buffer], domain[0]):
extrema = extrema[1:]
while extrema[-buffer-1] > domain[1] and not np.isclose(extrema[-buffer-1], domain[1]):
extrema = extrema[:-1]
return extrema
minima, maxima = expand_and_limit_extrema(minima), expand_and_limit_extrema(maxima)
return maxima, minima
def generate_transfer_from_extrema(minima, maxima):
"""Generates a transfer function from extrema that are generated from a bounded piecewise function.
Makes a transfer function (a squeeze or push function). Return format is _not_ the same
as a diameter or radius function.
Return format is the a list of (a, b, t) tuples, where [a, b) describe the domain in which
the output is t.
"""
transfer_func = []
for a, b in zip(maxima[:-1], maxima[1:]):
t = minima[np.logical_and(a < minima, minima < b)]
assert len(t) == 1
transfer_func.append((a, b, t.item()))
return transfer_func
def generate_transfer_extrema_callable(transfer_func, period):
"""
Makes a callable transfer function (a squeeze or a push function) for convenience and plotting purposes.
In practice, it is easier to work directly with the extrema of each function. transfer_func must be the
output of generate_transfer_from_extrema or generate_bounded_push_grasp_function
Returns a callable transfer function that is valid over the passed domain.
"""
_min, _max = transfer_func[0][0], transfer_func[-1][1]
def func(theta):
while theta > _max or np.isclose(theta, _max):
theta -= period
while theta < _min:
theta += period
for p in transfer_func:
a, b, t = p
if a < theta < b or np.isclose(a, theta):
return t
return func
def generate_bounded_push_grasp_function(push_func, squeeze_func):
"""
Returns a push-grasp function as defined in Goldberg (1993) by composing the push and squeeze functions
together, i.e. push_grasp(theta) = squeeze(push(theta)).
"""
squeeze_callable = generate_transfer_extrema_callable(squeeze_func, period=np.pi)
push_grasp_func = []
for a, b, t in push_func:
next_t = squeeze_callable(t)
if len(push_grasp_func) > 0 and np.isclose(next_t, push_grasp_func[-1][-1]):
prev = push_grasp_func.pop()
next_piece = (prev[0], b, next_t)
else:
next_piece = (a, b, next_t)
push_grasp_func.append(next_piece)
return push_grasp_func
def make_radius_function(points):
"""
Returns the radius function for a convex polygon.
Return format is a list of (m, l, i) tuples in the same format as described in the diameter function
generator.
"""
C_x, C_y = centroid(points)
pieces = []
for i in range(len(points)):
p = points[i]
prev_p = points[(i - 1) % len(points)]
x, y = p - prev_p
min_angle = np.arctan2(y, x) # % (2*np.pi)
l = p - (C_x, C_y)
orth_angle = (np.arctan2(*reversed(l)) + np.pi / 2) # % (2*np.pi)
dist = np.linalg.norm(l)
pieces.append((min_angle, dist, orth_angle))
pieces.sort(key=lambda p: p[0])
return pieces
class Interval:
"""
Implementation of a s-interval as defined in Goldberg (1993).
abs(interval) returns the lebesgue measure of the interval
"""
def __init__(self, a, b, image):
self.a = a
self.b = b
self.image: Image = image
def __abs__(self):
return self.b - self.a
def __repr__(self):
return f'Interval({(self.a)}, {(self.b)}, {repr(self.image)})'
# return f'Interval({round(self.a, 3)}, {round(self.b, 3)}, {repr(self.image)})'
class Image:
"""
Implementation of an s-image as defined in Goldberg (1993).
abs(image) returns the lebesgue measure of the image.
"""
def __init__(self, a, b):
self.a = a
self.b = b
def __abs__(self):
return self.b - self.a
def __repr__(self):
return f'Image({round(self.a, 3)}, {round(self.b, 3)})'
def generate_intervals(transfer_func, default_T=np.pi):
"""
Returns a list of s-intervals used to recover the plan using the algorithm described
in Goldberg (1993).
transfer_func must be either a squeeze or a push-grasp function.
"""
intervals = []
# Step 2 of algorithm: find widest single step
max_single_step = Interval(0, 0, None)
for a, b, t in transfer_func:
if (a > 0 or np.isclose(a, 0)) and b - a > abs(max_single_step) and not np.isclose(b - a, abs(max_single_step)):
max_single_step = Interval(a, b, Image(t, t))
intervals.append(max_single_step)
# For step 3, we need to generate all possible s-intervals with nonzero measure
all_intervals = []
for i in range(len(transfer_func) - 1):
if transfer_func[i][0] > 0 or np.isclose(transfer_func[i][0], 0):
for j in range(i + 1, len(transfer_func)):
image = Image(transfer_func[i][2], transfer_func[j][2])
interval = Interval(transfer_func[i][0], transfer_func[j][1], image)
all_intervals.append(interval)
# For step 3, we also need to compute the periodicity in the transfer (squeeze or push-grasp)
# function, which is the termination condition for the loop in step 3 of the algorithm.
T = transfer_func_periodicity(transfer_func, default_T=default_T)
# Step 3: Generate list of intervals
while not np.isclose(abs(intervals[-1]), T):
# Part 1: get all intervals with a smaller image than the width of the last interval
valid_ints = []
for i in all_intervals:
if abs(i.image) < abs(intervals[-1]):
valid_ints.append(i)
# pprint.pprint(valid_ints)
# Part 2: set the next interval to the widest such interval
widest, widest_idx = valid_ints[0], 0
for c, i in enumerate(valid_ints[1:]):
if abs(i) > abs(widest) and not np.isclose(abs(i), abs(widest)):
widest = i
widest_idx = c
elif np.isclose(abs(i), abs(widest)) and \
abs(i.image) < abs(widest.image) and \
not np.isclose(abs(i.image), abs(widest.image)):
# this block deals with ties for the largest interval by picking the interval
# with the smallest image.
widest = i
widest_idx = c
del all_intervals[widest_idx]
intervals.append(widest)
return intervals
def period_from_r_fold(r):
"""
Returns the period of a polygon's squeeze function given the n-fold (called r-fold in the paper)
rotational symmetry of the polygon. Equation is given in Goldberg (1993).
"""
return 2 * np.pi / (r * (1 + r % 2))
def transfer_func_periodicity(transfer_func, max_r=8, default_T=2 * np.pi):
"""
Returns the period of the passed transfer function.
For objects with no rotational symmetry, the period for the squeeze function will be pi
and push-grasp function will be 2pi.
"""
res_T = default_T
transfer_func_callable = generate_transfer_extrema_callable(transfer_func, period=2*np.pi)
x = np.linspace(0, 2 * np.pi, 1000)
y = np.array([transfer_func_callable(t) for t in x])
for r in range(2, max_r + 1):
T = period_from_r_fold(r)
x_shift = (x + T) % (2 * np.pi)
y_shift = np.array([transfer_func_callable(t) for t in x_shift]) % (2 * np.pi)
if all(np.isclose((y + T) % (2 * np.pi), y_shift)):
res_T = T
return res_T
def generate_plan(intervals):
"""
Generates a plan from a list of intervals using the method outlined in Goldberg (1993).
"""
plan = [0]
for i in reversed(range(len(intervals) - 1)):
eps = (abs(intervals[i]) - abs(intervals[i + 1].image)) / 2
# alpha = intervals[i + 1].image.a - intervals[i].a - eps + plan[-1]
alpha = plan[-1] - (intervals[i+1].image.a - intervals[i].a - eps)
plan.append(alpha)
return plan