-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
59 lines (42 loc) · 1.77 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import torch.nn as nn
import torch.optim as optim
def train(model, training_data, validation_data=None, num_epochs=10, lr=0.01, grad_norm=5):
'''
Train the given model on the training data
- Use cross entropy loss and Adam optimizer
- Run the training for num_epochs
- Use gradient clipping to avoid exploding gradients
- Calculate training loss
- Calculate loss on validation data on each epoch (optional)
- Return trained model and losses
'''
loss_function = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=lr)
model.train()
training_losses = []
validation_losses = []
for epoch in range(num_epochs):
training_epoch_loss = 0
validation_epoch_loss = 0
print("epoch: {} / {}".format(epoch+1, num_epochs))
for (input_x, label) in training_data:
prediction = model(input_x)
loss = loss_function(prediction, label)
optimizer.zero_grad()
loss.backward()
_ = nn.utils.clip_grad_norm_(model.parameters(), max_norm=grad_norm)
optimizer.step()
training_epoch_loss += loss.detach().item()
training_epoch_loss = training_epoch_loss / len(training_data)
training_losses.append(training_epoch_loss)
if validation_data:
for (valid_x, valid_label) in validation_data:
valid_prediction = model(valid_x)
loss = loss_function(valid_prediction, valid_label)
validation_epoch_loss += loss.detach().item()
validation_epoch_loss = validation_epoch_loss / len(validation_data)
validation_losses.append(validation_epoch_loss)
print("training loss: {} / validation loss: {}".format(training_epoch_loss, validation_epoch_loss))
else:
print("training loss: ", training_epoch_loss)
return model, training_losses, validation_losses