This repository has been archived by the owner on Jan 11, 2019. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathyoda-uncertainty.py
executable file
·87 lines (78 loc) · 3.48 KB
/
yoda-uncertainty.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
#!/usr/bin/env python
# TODO: allow supplying a confidence interval multiplier
import argparse
import yoda
import numpy as np
def master_formula(get_value_func, num_members):
val_0 = get_value_func(0)
dys_p_sq = np.zeros(len(val_0.xs))
dys_n_sq = np.zeros(len(val_0.xs))
for member in range(1, num_members, 2):
val_p = get_value_func(member)
val_n = get_value_func(member + 1)
assert (val_0.xs == val_p.xs).all()
assert (val_0.xs == val_n.xs).all()
dys_p_sq += np.max([val_p.ys - val_0.ys, val_n.ys - val_0.ys, np.zeros(len(val_0.ys))], 0) ** 2
dys_n_sq += np.min([val_p.ys - val_0.ys, val_n.ys - val_0.ys, np.zeros(len(val_0.ys))], 0) ** 2
val_0.dys_p = np.sqrt(dys_p_sq)
val_0.dys_n = np.sqrt(dys_n_sq)
return val_0
def replica_uncertainty(get_value_func, num_replicas):
val_0 = get_value_func(0)
dys_p_sq = np.zeros(len(val_0.xs))
dys_n_sq = np.zeros(len(val_0.xs))
contribs_p = np.zeros(len(val_0.xs))
contribs_n = np.zeros(len(val_0.xs))
for member in range(1, num_replicas+1):
rep = get_value_func(member)
assert (val_0.xs == rep.xs).all()
pos_mask = (rep.ys - val_0.ys) > 0
neg_mask = (rep.ys - val_0.ys) < 0
dys_p_sq += ((rep.ys - val_0.ys) * pos_mask) ** 2
dys_n_sq += ((rep.ys - val_0.ys) * neg_mask) ** 2
contribs_p += pos_mask * 1
contribs_n += neg_mask * 1
val_0.dys_p = np.sqrt(dys_p_sq / contribs_p)
val_0.dys_n = np.sqrt(dys_n_sq / contribs_n)
return val_0
class XSec(object):
def __init__(self, ao):
if isinstance(ao, yoda.core.Histo1D):
self.xs = np.array([x.xMid for x in ao])
self.ys = np.array([x.height for x in ao])
elif isinstance(ao, yoda.core.Scatter2D):
self.xs = np.array([p.x for p in ao])
self.ys = np.array([p.y for p in ao])
else:
raise ValueError("not supported object of type %s", str(type(ao)))
self.xs_low = np.array([x.xMin for x in ao])
self.xs_high = np.array([x.xMax for x in ao])
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("-o", "--output", required=True, help="Path to the output file")
parser.add_argument("-c", "--central", required=True, help="Central values input file")
parser.add_argument("-t", "--type", required=True, choices=['hessian', 'replica'], help="PDF error vectors type")
parser.add_argument("other", nargs='*', help="Other input files")
args = parser.parse_args()
central_aos = yoda.read(args.central)
output_aos = []
for ao in central_aos.values():
if not isinstance(ao, yoda.core.Histo1D) and not isinstance(ao, yoda.core.Scatter2D):
continue
print ao.path
num_members = len(args.other)
def get_xsec(member):
if member == 0:
return XSec(ao)
y = yoda.read(args.other[member-1])
member_ao = y[ao.path]
return XSec(member_ao)
if args.type == 'hessian':
xsec = master_formula(get_xsec, num_members)
elif args.type == 'replica':
xsec = replica_uncertainty(get_xsec, num_members)
s = yoda.Scatter2D(ao.path)
for (low, center, high, y, dp, dn) in zip(xsec.xs_low, xsec.xs, xsec.xs_high, xsec.ys, xsec.dys_p, xsec.dys_n):
s.addPoint(center, y, xerrs=[center-low, high-center], yerrs=[dn, dp])
output_aos.append(s)
yoda.writeYODA(output_aos, args.output)