-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrajectory_statistics.py
291 lines (243 loc) · 7.39 KB
/
trajectory_statistics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
import numpy as np
from typing import Dict
import pandas as pd
def l_stat(Y: np.ndarray, tk: float, bdef: float) -> Dict:
w = h = stime = dyi = avtd = tw = ntd = 0.0 #saving space!
M = len(Y)
mind = bdef
mintd = M
maxbd = 0.0
maxtd = 0.0
dy = np.zeros(M)
# ...initializations...
# Compute the interstep distances, the minimal 1 and
# some other quantities that characterize the bunching:
for i in range(1, M):
dyi = Y[i] - Y[i - 1]
dy[i] = dyi
if dyi <= bdef:
# counting the number of distances in bunches ...
h += 1
# ...and the total bunch width
w += dyi
if dyi < mind:
mind = dyi
if dyi > maxbd:
maxbd = dyi
else:
tw += dyi
ntd += 1
if dyi < mintd:
mintd = dyi
if dyi > maxtd:
maxtd = dyi
dyi = Y[0] - Y[M - 1] + M # take care of the PBC
dy[0] = dyi
if dyi <= bdef:
w += dyi
h += 1
if dyi < mind:
mind = dyi
if dyi > maxbd:
maxbd = dyi
else:
tw += dyi
ntd += 1
if dyi < mintd:
mintd = dyi
if dyi > maxtd:
maxtd = dyi
avtd = tw / ntd
if maxbd > bdef:
print('Alert:maxbd!')
return 0
if mintd < bdef:
print('Alert:mintd!')
return 0
# Counting the terraces and their width:
Tno = 0
if dy[0] > bdef:
Tno = 1
for i in range(1, M):
dyi = dy[i]
if dyi > bdef and dy[i - 1] <= bdef:
Tno += 1
# check if the terrace in the beginning spannes the boundaries
if dy[0] > bdef and dy[M - 1] > bdef:
Tno -= 1
if Tno > 0:
stime = float(M) / float(Tno)
tw = tw / float(Tno)
h = h / float(Tno)
w = w / float(Tno)
statistics = {
"dy": dy,
"M": M,
"bdef": bdef,
"tk": tk,
"h": h,
"stime": stime,
"w": w,
"tw": tw,
"avtd": avtd,
"Tno": Tno,
"mind": mind,
"maxbd": maxbd,
"mintd": mintd,
"maxtd": maxtd
}
return statistics
else:
print("terrace alert")
# Heavy statistics, returns pandas dataframe with results
# TODO: add better colum names with final statistics
def h_stat(dy, bdef, max_bunch_size=300) -> pd.DataFrame:
M = len(dy)
bszi = np.zeros(max_bunch_size)
absmin = np.zeros(max_bunch_size)
fdmin = np.zeros(max_bunch_size)
bwmin = np.zeros(max_bunch_size)
bdmin = np.zeros(max_bunch_size)
avbw = np.zeros((max_bunch_size, 2))
avmn = np.zeros(max_bunch_size)
avbd = np.zeros(max_bunch_size)
avf = np.zeros(max_bunch_size)
avl = np.zeros(max_bunch_size)
bw = np.zeros(M // 2)
bd = np.zeros(M // 2)
mindi = np.zeros(M // 2)
lbd = np.zeros(M // 2)
fbd = np.zeros(M // 2)
bsz = np.zeros(M // 2, dtype=np.int64)
tbw = 0.0
tmin = 0.0
tla = 0.0
bno = 0
inc = 0
dyi = dy[0]
if dyi <= bdef:
tla = dyi
tmin = dyi
tbw = dyi
bno = 1
fbd[0] = dyi
inc = 2
for Ip in range(1, M):
dyip = dy[Ip]
if dyip <= bdef:
inc += 1
if dyip < tmin:
tmin = dyip
tbw += dyip
tla = dyip
else:
break
if bno == 1:
bd[0] = tbw / float(inc - 1)
bw[0] = tbw
mindi[0] = tmin
bsz[0] = inc
lbd[0] = tla
for i in range(1, M):
dyi = dy[i]
if dyi <= bdef:
if dy[i - 1] > bdef:
tla = dyi
tmin = dyi
tbw = dyi
bno += 1
fbd[bno - 1] = dyi
inc = 2
for Ip in range(i + 1, M):
dyip = dy[Ip]
if dyip <= bdef:
inc += 1
if dyip < tmin:
tmin = dyip
tbw += dyip
tla = dyip
else:
break
bd[bno - 1] = tbw / float(inc - 1)
bw[bno - 1] = tbw
mindi[bno - 1] = tmin
bsz[bno - 1] = inc
lbd[bno - 1] = tla
# To account for the situation when the bunch crosses the
# boundary conditions:
if dy[0] <= bdef and dy[M - 1] <= bdef:
ibw = bsz[0] + bsz[bno - 1] - 1
bw[0] += bw[bno - 1]
bd[0] = bw[0] / float(ibw - 1)
mindi[0] = min(mindi[0], mindi[bno - 1])
bsz[0] = ibw
fbd[0] = fbd[bno - 1]
bsz[bno - 1] = 0
bd[bno - 1] = 0.0
bw[bno - 1] = 0.0
mindi[bno - 1] = 0.0
lbd[bno - 1] = 0.0
bno -= 1
if bno > 0:
for i in range(0, bno + 1):
bszi = bsz[i - 1]
if bszi > max_bunch_size:
print(f'Alert: Bunch Size exceeds {max_bunch_size=}')
continue
tmin = mindi[i - 1]
avmn[bszi - 1] += tmin
if tmin < absmin[bszi - 1]:
absmin[bszi - 1] = tmin
tmin = fbd[i - 1]
avf[bszi - 1] += tmin
if tmin < fdmin[bszi - 1]:
fdmin[bszi - 1] = tmin
tmin = bd[i - 1]
avbd[bszi - 1] += tmin
if tmin < bdmin[bszi - 1]:
bdmin[bszi - 1] = tmin
tmin = bw[i - 1]
avbw[bszi - 1, 0] += tmin
avbw[bszi - 1, 1] += 1
if tmin < bwmin[bszi - 1]:
bwmin[bszi - 1] = tmin
avl[bszi - 1] += lbd[i - 1]
# # LOOP 1. Prints too much, disabled for now
# print("LOOP 1:")
# for i in range(1, max_bunch_size):
# dyi = absmin[i-1]
# if dyi <= bdef:
# print(i, dyi, fdmin[i-1], bwmin[i-1], bdmin[i-1])
# LOOP 2
r = []
print("LOOP 2:")
for i in range(1, max_bunch_size):
dyi = avbw[i - 1, 1]
if dyi > 0:
r.append([
i, avbw[i - 1, 0] / dyi, avbd[i - 1] / dyi,
avmn[i - 1] / dyi, avf[i - 1] / dyi, avl[i - 1] / dyi
])
print("R1: ", i, avbw[i - 1, 0] / dyi, avbd[i - 1] / dyi)
print("R2: ", i, avmn[i - 1] / dyi, avf[i - 1] / dyi,
avl[i - 1] / dyi)
r = pd.DataFrame(r)
r.columns = ["bunch no", "avbw[i - 1, 0] / dyi", "avbd[i - 1] / dyi",
"avmn[i - 1] / dyi", "avf[i - 1] / dyi", "avl[i - 1] / dyi"]
return r
def test():
bdef = 1.0
with open("tests/test_input.txt", "r") as f:
M = int(f.readline())
Y = np.zeros(M)
for i in range(Y.shape[0]):
Y[i] = float(f.readline())
output = l_stat(Y, 0.0, bdef)
print("\n\n********Surface statistics (MSI)********\n\n")
print(
f'М = {M}\tbdef = {output["bdef"]}\tmind = {output["mind"]}\tmaxbd = {output["maxbd"]}\tmintd = {output["mintd"]}\tmaxtd = {output["maxtd"]}\tavtd = {output["avtd"]}'
)
print("\n\n********Surface statistics (MSII)********\n\n")
h_stat(output["dy"], bdef)
if __name__ == "__main__":
test()