-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapriori.py
40 lines (29 loc) · 1.38 KB
/
apriori.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
# Importing the libraries
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
# Data Preprocessing
dataset = pd.read_csv('Market_Basket_Optimisation.csv', header = None)
transactions = []
for i in range(0, 7501):
transactions.append([str(dataset.values[i,j]) for j in range(0, 20)])
# Training the Apriori model on the dataset
from apyori import apriori
rules = apriori(transactions = transactions, min_support = 0.003, min_confidence = 0.2, min_lift = 3, min_length = 2, max_length = 2)
# Visualising the results
## Displaying the first results coming directly from the output of the apriori function
results = list(rules)
results
## Putting the results well organised into a Pandas DataFrame
def inspect(results):
lhs = [tuple(result[2][0][0])[0] for result in results]
rhs = [tuple(result[2][0][1])[0] for result in results]
supports = [result[1] for result in results]
confidences = [result[2][0][2] for result in results]
lifts = [result[2][0][3] for result in results]
return list(zip(lhs, rhs, supports, confidences, lifts))
resultsinDataFrame = pd.DataFrame(inspect(results), columns = ['Left Hand Side', 'Right Hand Side', 'Support', 'Confidence', 'Lift'])
## Displaying the results non sorted
resultsinDataFrame
## Displaying the results sorted by descending lifts
resultsinDataFrame.nlargest(n = 10, columns = 'Lift')