-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprocess.py
28 lines (25 loc) · 1.08 KB
/
process.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
import glob
import re
import numpy as np
for result_file in glob.glob("results/*.txt"):
# print(result_file)
r = re.match("results\/(\d+)\.(\d+)\.(\d+)\.(\d+)\.txt", result_file)
test_pos = int(r.group(1))
train_dist = int(r.group(2))
noise = int(r.group(3))
gap = int(r.group(4))
with open(result_file, "r") as F:
# print(result_file)
row = [test_pos, train_dist, noise, gap]
row_values = []
for line in F.readlines():
if re.match("(\d+\.\d+)\t(\d+\.\d+)\t(\d+\.\d+)\t(\d+\.\d+)", line):
row_values.append(map(float, line.strip().split("\t")))
row_values = np.array(row_values)
mean_train_acc = np.mean(row_values[:,0])
mean_test_acc = np.mean(row_values[:,2])
std_train_acc = np.std(row_values[:,0])
std_test_acc = np.std(row_values[:,2])
row += [mean_train_acc, mean_test_acc, std_train_acc, std_test_acc]
row += [row_values[:, 0].shape[0]]
print("\t".join(map(str, row)))