-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
executable file
·235 lines (200 loc) · 10.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import argparse
from torch import optim
from feng.args import *
from feng.data import *
from feng.trainer import *
from feng.models import *
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--input", "-i", type=str,
default="./data/",
help="Path to the folder with input files")
parser.add_argument("--pseudo", "-p", type=str,
default="./data/pseudoseqs.csv.gz",
help="Path to the file with pseudo sequences")
parser.add_argument("--output", "-o", type=str,
default="./",
help="Path to the output folder")
parser.add_argument("--embedding", "--embeddings", "--emb", type=str,
default="./aa_models/w2v_9mers_3wind_20dim_norm.pkl",
help="Path to amino acid embeddings")
parser.add_argument("--comment", type=str,
default="",
help="Additional comment")
# parser.add_argument("--pep_len", "--len", type=str,
# default="8-11",
# help="Min and max peptide length in format '<min>-<max>' (default: '8-11')")
parser.add_argument("--abelin", action="store_true",
help="Abelin testing if passed")
parser.add_argument("--optim", type=str,
default="rmsprop",
help="rmsprop or adam")
parser.add_argument("--pep_blocks", "--pep", type=int,
default=2,
help="Number of blocks for peptide branch")
parser.add_argument("--mhc_blocks", "--mhc", type=int,
default=2,
help="Number of blocks for MHC branch")
parser.add_argument("--filters", "-f", type=int,
default=32,
help="Number of filters")
parser.add_argument("--batch_size", "-b", type=int,
default=64,
help="size batch")
parser.add_argument("--epochs", "-e", type=int,
default=10,
help="Number of epochs")
parser.add_argument("--learning_rate", "--lr", type=float,
default=0.002,
help="Learning rate")
parser.add_argument("--sampling", "-s", type=str,
default="bal",
help="'brute', 'bal' or 'wei'")
parser.add_argument("--nn_mode", "--nn", type=str,
default="cnn",
help="'cnn' or 'rnn'")
# parser.add_argument("--train_mode", "--tm", type=str,
# default="reg",
# help="Regression ('reg') or classification ('clf')")
parser.add_argument("--num_workers", "--nw", type=int,
default=0,
help="Number of workers for DataLoader")
parser.add_argument("--synth", action="store_true",
help="If specified than generate random peptides for batches")
parser.add_argument("--chaos", action="store_true",
help="How many epochs for chaotic pretraining")
parser.add_argument("--hidden_dim", "--hd", type=int,
default=32,
help="Size of a hidden dimension for RNN")
parser.add_argument("--layers", "--nl", type=int,
default=2,
help="Number of layers of RNN")
parser.add_argument("--linear_dim", "--ld", type=str,
default="32-32",
help="Dimensions and number of Dense layers in a form <#neurons>-<#neurons>-... (default: '32-32'). ")
parser.add_argument("--drop_inp", "--di", type=float,
default=.2,
help="Dropout for the input data")
parser.add_argument("--drop_nn", "--dn", type=float,
default=.2,
help="Dropout for convolutions in CNN / RNN cells")
parser.add_argument("--drop_lin", "--dl", type=float,
default=.2,
help="Dropout for linear layers")
parser.add_argument("--aa_channels", type=int,
default=0,
help="Dropout for linear layers")
args = parser.parse_args()
# make_io_args(parser)
# make_train_args(parser)
# make_resnet_args(parser)
# make_rnn_args(parser)
# make_dense_args(parser)
# io_args = process_io_args(args)
# load data, etc.
# train_args = process_train_args(args)
# make trainer, optimizer, etc
# nn_args = process_nn_args(args)
# start train, test, etc.
# TRAIN_FILE = "/curated.csv.gz"
# VAL_FILE = "/jci.csv.gz"
TRAIN_FILE = "/classic_train.csv.gz"
VAL_FILE = "/classic_test.csv.gz"
pseudo_sequences = load_pseudo(args.pseudo, args.embedding)
print()
train_dataset = load_iedb(args.nn_mode, args.input + TRAIN_FILE, args.embedding, pseudo_sequences, min_len=8, max_len=11, pad_char="X")
synth_dataset = None
if args.synth:
synth_dataset = MhcSynthDataset(args.embedding, len(train_dataset), pseudo_sequences, min(train_dataset.len), max(train_dataset.len), args.nn_mode)
test_dataset = None
abelin_dataset = None
print()
if args.abelin:
abelin_dataset = load_abelin(args.nn_mode, args.input, args.embedding, pseudo_sequences, min_len=8, max_len=11, pad_char="X")
print()
test_dataset = load_iedb(args.nn_mode, args.input + VAL_FILE, args.embedding, pseudo_sequences, min_len=8, max_len=11, pad_char="X")
print()
nn_args = {
"mhc_len": train_dataset.mhc_max_len(),
"pep_len": train_dataset.pep_max_len(),
"mhc_blocks": args.mhc_blocks,
"pep_blocks": args.pep_blocks,
"aa_channels": args.aa_channels if args.aa_channels else train_dataset.aa_channels(),
"kernel": 5,
"hidden": args.hidden_dim,
"layers": args.layers,
"dense": list(map(int, args.linear_dim.split("-"))),
"drop_inp": args.drop_inp,
"drop_lin": args.drop_lin,
"drop_nn": args.drop_nn,
"nn_mode": args.nn_mode
}
# for s in ["bal", "wei"]:
# args.sampling = s
if nn_args["nn_mode"] == "rnn":
model = AttnRNN(nn_args["pep_len"], nn_args["hidden"], nn_args["layers"], nn_args["aa_channels"], nn_args["dense"], nn_args["drop_lin"], nn_args["drop_nn"], nn_args["drop_inp"])
elif nn_args["nn_mode"] == "cnn":
print("AA channels", nn_args["aa_channels"])
model = ResNet(args.filters, nn_args["mhc_len"], nn_args["pep_len"], args.mhc_blocks, args.pep_blocks, nn_args["aa_channels"], nn_args["kernel"], nn_args["dense"], nn_args["drop_lin"], nn_args["drop_nn"], nn_args["drop_inp"])
else:
print("Wrong NN architecture:", nn_args["nn_mode"])
0/0
if args.chaos:
print("Chaotic pre-training")
criterion, pred_mode = F.binary_cross_entropy, "clf"
optimizer = optim.RMSprop(model.parameters(), lr=args.learning_rate, centered=True)
train_dataset_binders = train_dataset.binders()
print("Number of binders:", len(train_dataset_binders))
chaos_dataset = MhcSynthDataset(args.embedding, len(train_dataset_binders), pseudo_sequences, 8, 11, nn_args["nn_mode"])
trainer = Trainer(nn_args["nn_mode"], model, train_dataset_binders, synth_dataset=chaos_dataset, pred_mode=pred_mode)
trainer.train(args.chaos, criterion, optimizer, args.batch_size, sampling="wei", num_workers=args.num_workers, test_dataset=test_dataset)
if args.optim == "rmsprop":
make_optimizer = lambda model: optim.RMSprop(model.parameters(), lr=args.learning_rate, centered=True)
elif args.optim == "adam":
make_optimizer = lambda model: optim.Adam(model.parameters(), lr=args.learning_rate)
else:
print("Wrong optimizer name:", args.optim)
0/0
# make_optimizer = lambda model: optim.SparseAdam(model.parameters(), lr=args.learning_rate)
##################
##################
trainer_list = {}
for i in range(50):
if i % 2:
criterion, pred_mode = F.mse_loss, "reg"
else:
criterion, pred_mode = F.binary_cross_entropy, "clf"
optimizer = make_optimizer(model)
trainer = Trainer(nn_args["nn_mode"], model, train_dataset, synth_dataset=synth_dataset, pred_mode=pred_mode)
trainer.train(args.epochs, criterion, optimizer, args.batch_size, sampling=args.sampling, num_workers=args.num_workers, test_dataset=test_dataset, start_epoch=args.epochs*i+1)
trainer_list[pred_mode] = trainer
##################
##################
# criterion, pred_mode = F.mse_loss, "reg"
# criterion, pred_mode = F.binary_cross_entropy, "clf"
# trainer = Trainer(nn_args["nn_mode"], model, train_dataset, synth_dataset=synth_dataset, pred_mode=pred_mode)
# optimizer = make_optimizer(model)
# trainer.train(args.epochs, criterion, optimizer, args.batch_size, sampling=args.sampling, num_workers=args.num_workers, test_dataset=test_dataset)
# optimizer = make_optimizer(model)
# trainer.train(args.epochs, criterion, optimizer, args.batch_size*4, sampling=args.sampling, num_workers=args.num_workers, test_dataset=test_dataset, start_epoch=args.epochs+1)
# optimizer = make_optimizer(model)
# trainer.train(args.epochs, criterion, optimizer, args.batch_size*16, sampling=args.sampling, num_workers=args.num_workers, test_dataset=test_dataset, start_epoch=args.epochs*2+1)
for key, trainer in trainer_list.items():
print(key)
out_filename = "_".join([args.sampling,
args.embedding[args.embedding.rfind("/")+1 : -4],
"synth" if args.synth else "nosyn",
"e" + str(args.epochs),
"b" + str(args.batch_size),
"mhc"+str(args.mhc_blocks),
"pep"+str(args.pep_blocks),
"lin"+args.linear_dim])
out_filename += "_filters" + str(args.filters)
if args.comment:
out_filename += "_" + args.comment
if abelin_dataset:
ppv_scores = evaluate_abelin(trainer, abelin_dataset, num_workers=0, comment=out_filename)
# with open(out_filename + ".txt", "w") as outf:
# outf.write(json.dumps(trainer.info, sort_keys=True, indent=4, separators=(',', ': ')))
# with open("model_" + out_filename + ".pt", "wb") as outf:
# torch.save(model.state_dict(), outf)