-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathword_frequency.py
executable file
·186 lines (148 loc) · 5.99 KB
/
word_frequency.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
#!/usr/bin/env python
##########################################################################
# #
# This program is free software; you can redistribute it and/or modify #
# it under the terms of the GNU General Public License as published by #
# the Free Software Foundation; version 2 of the License. #
# #
# This program is distributed in the hope that it will be useful, #
# but WITHOUT ANY WARRANTY; without even the implied warranty of #
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the #
# GNU General Public License for more details. #
# #
##########################################################################
"""
Given a list of words, find the frequency of these words in a random set of
pages and in a list of desired pages (and the related talk pages).
Data are stored in a database.
"""
import sys
import os
from datetime import date
import nltk
## PROJECT LIBS
from sonet.mediawiki import HistoryPageProcessor, explode_dump_filename, \
get_translations, get_tags
from sonet import lib
from sonet.timr import Timr
## DJANGO
os.environ['DJANGO_SETTINGS_MODULE'] = 'django_wikinetwork.settings'
PROJECT_ROOT = os.path.dirname(os.path.abspath(__file__))
sys.path.append(PROJECT_ROOT+'/django_wikinetwork')
from django_wikinetwork.wikinetwork.models import WikiWord
class HistoryWordsPageProcessor(HistoryPageProcessor):
words = None
counter_words = 0
counter_desired_words = None
counter_first = None
_check_creation = True
_creation = None
def __init__(self, **kwargs):
super(HistoryWordsPageProcessor, self).__init__(**kwargs)
self.tokenizer = nltk.PunktWordTokenizer()
self.stopwords = frozenset(nltk.corpus.stopwords.words('italian'))
self.counter_desired_words = nltk.FreqDist()
def process_text(self, elem):
if self._skip:
return
try:
text = elem.text.encode('utf-8')
except AttributeError: ##TODO:increment revision count?
## this tag is empty
return
tokens = self.tokenizer.tokenize(nltk.clean_html(text.lower()))
##TODO: togliere questo limite sulla lunghezza?
text = [t for t in tokens if len(t) > 2 and
t not in self.stopwords]
self.counter_words += len(text)
self.counter_desired_words.update(text)
self.count += 1
if not self.count % 100000:
print 'PAGES:', self.counter_pages, 'REVS:', self.count
sys.exit(0)
def process_timestamp(self, elem):
if self._skip or not self._check_creation: return
timestamp = elem.text
year = int(timestamp[:4])
month = int(timestamp[5:7])
day = int(timestamp[8:10])
revision_time = date(year, month, day)
if self._creation is None:
self._creation = revision_time
elif (revision_time - self._creation).days > 7:
self.counter_first = self.counter_desired_words.copy()
self._check_creation = False
def save(self):
#print '-'*10, self._type+":", self._title.encode('utf-8'), '-'*10
data = dict((k, v) for k, v in
((word, self.counter_desired_words.freq(word))
for word in self.words) if v > 0)
#for word in self.words:
# print word, self.counter_desired_words.freq(word)
#print data
del self.counter_desired_words
ww = WikiWord(
title=self._title,
lang=self.lang,
desired=self._desired,
talk=(self._type == 'talk')
)
if data:
ww.data = data
if self.counter_first:
data_first = dict((k, v) for k, v in
((word, self.counter_first.freq(word))
for word in self.words) if v > 0)
if data_first:
ww.data_first = data_first
elif data:
ww.data_first = data
##ww.save()
self.counter_pages += 1
self.counter_desired_words = nltk.FreqDist()
self._check_creation = True
self._creation = None
def get_lines_in_list(fn, encoding='latin-1'):
with open(fn) as f:
lines = f.readlines()
return [l.decode(encoding) for l in [l.strip() for l in lines]
if l and not l[0] == '#']
def main():
import optparse
p = optparse.OptionParser(
usage="usage: %prog [options] file desired_list acceptance_ratio")
p.add_option('-v', action="store_true", dest="verbose", default=False,
help="Verbose output (like timings)")
opts, files = p.parse_args()
if opts.verbose:
import logging
logging.basicConfig(stream=sys.stderr,
level=logging.DEBUG)
if not files:
p.error("Give me a file, please ;-)")
xml, desired_pages_fn, desired_words_fn = files[0:3]
threshold = float(files[3])
desired_words = [w.lower() for w in get_lines_in_list(desired_words_fn)]
lang, _, _ = explode_dump_filename(xml)
deflate, _lineno = lib.find_open_for_this_file(xml)
if _lineno:
src = deflate(xml, 51)
else:
src = deflate(xml)
translation = get_translations(src)
tag = get_tags(src, tags='page,title,revision,'+ \
'minor,timestamp,redirect,text')
src.close()
src = deflate(xml)
processor = HistoryWordsPageProcessor(tag=tag, lang=lang)
processor.talkns = translation['Talk']
processor.threshold = threshold
processor.set_desired_from_csv(desired_pages_fn)
processor.words = desired_words
print "BEGIN PARSING"
with Timr('Parsing'):
processor.start(src)
if __name__ == "__main__":
import cProfile as profile
profile.run('main()', 'mainprof')
#main()