-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathevaluate_real.py
162 lines (131 loc) · 5.06 KB
/
evaluate_real.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
""" Predict tracks for a sequence with a network """
import logging
import os
from pathlib import Path
import hydra
import imageio
import IPython
import numpy as np
import pytorch_lightning as pl
import torch
from omegaconf import OmegaConf, open_dict
from prettytable import PrettyTable
from tqdm import tqdm
from utils.dataset import CornerConfig, ECSubseq, EDSSubseq, EvalDatasetType
from utils.timers import CudaTimer, cuda_timers
from utils.track_utils import (
TrackObserver,
get_gt_corners,
)
from utils.visualization import generate_track_colors, render_pred_tracks, render_tracks
# Configure GPU order
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
# Logging
logger = logging.getLogger(__name__)
results_table = PrettyTable()
results_table.field_names = ["Inference Time"]
# Configure datasets
corner_config = CornerConfig(30, 0.3, 15, 0.15, False, 11)
EvalDatasetConfigDict = {
EvalDatasetType.EC: {"dt": 0.010, "root_dir": "<path>"},
EvalDatasetType.EDS: {"dt": 0.005, "root_dir": "<path>"},
}
EVAL_DATASETS = [
("peanuts_light_160_386", EvalDatasetType.EDS),
("rocket_earth_light_338_438", EvalDatasetType.EDS),
("ziggy_in_the_arena_1350_1650", EvalDatasetType.EDS),
("peanuts_running_2360_2460", EvalDatasetType.EDS),
("shapes_translation_8_88", EvalDatasetType.EC),
("shapes_rotation_165_245", EvalDatasetType.EC),
("shapes_6dof_485_565", EvalDatasetType.EC),
("boxes_translation_330_410", EvalDatasetType.EC),
("boxes_rotation_198_278", EvalDatasetType.EC),
]
def evaluate(model, sequence_dataset, dt_track_vis, sequence_name, visualize):
tracks_pred = TrackObserver(
t_init=sequence_dataset.t_init, u_centers_init=sequence_dataset.u_centers
)
model.reset(sequence_dataset.n_tracks)
event_generator = sequence_dataset.events()
cuda_timer = CudaTimer(model.device, sequence_dataset.sequence_name)
with torch.no_grad():
# Predict network tracks
for t, x in tqdm(
event_generator,
total=sequence_dataset.n_events - 1,
desc="Predicting tracks with network...",
):
with cuda_timer:
x = x.to(model.device)
y_hat = model.forward(x)
sequence_dataset.accumulate_y_hat(y_hat)
tracks_pred.add_observation(t, sequence_dataset.u_centers.cpu().numpy())
if visualize:
# Visualize network tracks
gif_img_arr = []
tracks_pred_interp = tracks_pred.get_interpolators()
track_colors = generate_track_colors(sequence_dataset.n_tracks)
for i, (t, img_now) in enumerate(
tqdm(
sequence_dataset.frames(),
total=sequence_dataset.n_frames - 1,
desc="Rendering predicted tracks... ",
)
):
fig_arr = render_pred_tracks(
tracks_pred_interp, t, img_now, track_colors, dt_track=dt_track_vis
)
gif_img_arr.append(fig_arr)
imageio.mimsave(f"{sequence_name}_tracks_pred.gif", gif_img_arr)
# Save predicted tracks
np.savetxt(
f"{sequence_name}.txt",
tracks_pred.track_data,
fmt=["%i", "%.9f", "%i", "%i"],
delimiter=" ",
)
metrics = {}
metrics["latency"] = sum(cuda_timers[sequence_dataset.sequence_name])
return metrics
@hydra.main(config_path="configs", config_name="eval_real_defaults")
def track(cfg):
pl.seed_everything(1234)
OmegaConf.set_struct(cfg, True)
with open_dict(cfg):
cfg.model.representation = cfg.representation
logger.info("\n" + OmegaConf.to_yaml(cfg))
# Configure model
model = hydra.utils.instantiate(cfg.model, _recursive_=False)
state_dict = torch.load(cfg.weights_path, map_location="cuda:0")["state_dict"]
model.load_state_dict(state_dict)
if torch.cuda.is_available():
model = model.cuda()
model.eval()
# Run evaluation on each dataset
for seq_name, seq_type in EVAL_DATASETS:
if seq_type == EvalDatasetType.EC:
dataset_class = ECSubseq
elif seq_type == EvalDatasetType.EDS:
dataset_class = EDSSubseq
else:
raise ValueError
dataset = dataset_class(
EvalDatasetConfigDict[seq_type]["root_dir"],
seq_name,
-1,
cfg.patch_size,
cfg.representation,
EvalDatasetConfigDict[seq_type]["dt"],
corner_config,
)
# Load ground truth corners for this seq and override initialization
gt_features_path = str(Path(cfg.gt_path) / f"{seq_name}.gt.txt")
gt_start_corners = get_gt_corners(gt_features_path)
dataset.override_keypoints(gt_start_corners)
metrics = evaluate(model, dataset, cfg.dt_track_vis, seq_name, cfg.visualize)
logger.info(f"=== DATASET: {seq_name} ===")
logger.info(f"Latency: {metrics['latency']} s")
results_table.add_row([metrics["latency"]])
logger.info(f"\n{results_table.get_string()}")
if __name__ == "__main__":
track()