-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain_compress.py
291 lines (277 loc) · 15.4 KB
/
train_compress.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
import os, argparse, sys, shutil, warnings, glob
from datetime import datetime
import matplotlib.pyplot as plt
from math import log2, log10
import pandas as pd
import numpy as np
from collections import OrderedDict
from torchvision import transforms, utils
import torchvision
import torch.nn.functional as F
import torch.nn as nn
import torch.optim as optim
import torch
from torch.utils.data import DataLoader
from torch.autograd import Variable
import torch.optim.lr_scheduler as lr_scheduler
from skimage import exposure, color, io, img_as_float, img_as_ubyte
from skimage.util import view_as_windows, pad, montage
from PIL import Image, ImageFilter
import imagej
import data_loader as data
import models
import pytorch_fid.fid_score as fid_score
def new_compress_curriculum(args, cur_factor, csv='train', stc=False):
transformed_dataset = data.Compress_Dataset(csv_file=data.compress_csv_path(csv, args.dataset),
transform=data.Compose([
transforms.RandomCrop((args.patch_size, args.patch_size)),
transforms.RandomHorizontalFlip(),
transforms.RandomVerticalFlip(),
data.Rescale((args.patch_size, args.patch_size), up_factor=cur_factor, stc=stc),
data.ToTensor()
]))
dataloader = DataLoader(transformed_dataset, batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers)
return dataloader
def train(args, epoch, run, dataloader, generator, discriminator, optimizer_G, optimizer_D, criterionL, criterionMSE, Tensor=None, device='cuda:0', patch=None):
l = args.percep_weight
if args.gan == 0:
gan = False
else:
gan = True
epoch_loss = 0
gan_loss = 0
total_loss = 0
dis_loss = 0
generator.train()
for iteration, batch in enumerate(dataloader):
real_mid = Variable(batch['input'].type(Tensor).to(device), requires_grad=False)
real_high = Variable(batch['output'].type(Tensor).to(device), requires_grad=False)
# Adversarial ground truths
valid = Variable(Tensor(np.ones((real_mid.size(0), *patch))).to(device), requires_grad=False)
fake = Variable(Tensor(np.zeros((real_mid.size(0), *patch))).to(device), requires_grad=False)
#---------------
# Train Generator
#---------------
optimizer_G.zero_grad()
# GAN loss
fake_high = generator(real_mid)
if gan:
pred_fake = discriminator(fake_high, real_mid)
loss_GAN = criterionMSE(pred_fake, valid)
# Identity
lossL1 = criterionL(fake_high, real_high)
loss_pixel = lossL1
# Total loss
if gan:
loss_G = l * loss_GAN + (1-l) * loss_pixel
loss_G.backward()
total_loss = total_loss + loss_G.item()
gan_loss = gan_loss + loss_GAN.item()
else:
loss_pixel.backward()
optimizer_G.step()
#---------------
# Train Discriminator
#---------------
if gan and iteration % args.num_critic == 0:
optimizer_D.zero_grad()
# Real loss
pred_real = discriminator(real_high, real_mid)
loss_real = criterionMSE(pred_real, valid)
# Fake loss
pred_fake = discriminator(fake_high.detach(), real_mid)
loss_fake = criterionMSE(pred_fake, fake)
# Total loss
loss_D = 0.5 * (loss_real + loss_fake)
loss_D.backward()
optimizer_D.step()
dis_loss = dis_loss + loss_D.item()
epoch_loss = epoch_loss + loss_pixel.item()
if gan:
sys.stdout.write('\r[%d/%d][%d/%d] Discriminator_Loss: %.4f Generator_Loss (Identity/Advers/Total): %.4f/%.4f/%.4f'
% (epoch, args.num_epochs, iteration, len(dataloader), loss_D.item(),
loss_pixel.item(), loss_GAN.item(), loss_G.item()))
else:
sys.stdout.write('\r[%d/%d][%d/%d] Generator_L1_Loss: %.4f'
% (epoch, args.num_epochs, iteration, len(dataloader), loss_pixel.item()))
print("\n ===> Epoch {} Complete: Avg. Loss: {:.4f}".format(epoch, epoch_loss / len(dataloader)))
g_path = os.path.join('weights', run, 'generator.pth')
d_path = os.path.join('weights', run, 'discriminator.pth')
os.makedirs(os.path.join('weights', run), exist_ok=True)
torch.save(generator.state_dict(), g_path)
if gan:
os.makedirs(os.path.join('weights', run), exist_ok=True)
torch.save(discriminator.state_dict(), d_path)
def test(args, generator, test_csv, stitching=False):
try:
shutil.rmtree('output')
except:
pass
os.makedirs('output', exist_ok=True)
os.makedirs('output/lr', exist_ok=True)
os.makedirs('output/hr', exist_ok=True)
os.makedirs('output/sr', exist_ok=True)
os.makedirs('output/temp_patch', exist_ok=True)
os.makedirs('output/temp_patch_target', exist_ok=True)
os.makedirs('output/temp_channel', exist_ok=True)
step = 192
test_files = pd.read_csv(test_csv)
avg_fid = 0
avg_psnr = 0
for k in range(len(test_files)):
img = Image.open(test_files.iloc[k, 0])
img_hr_array = img_as_float(np.array(img))
img_lr = img.resize((int(img.size[1]/args.up_scale), int(img.size[0]/args.up_scale)))
img_lr = img_lr.resize(img.size, Image.BILINEAR)
img_lr = img_lr.filter(ImageFilter.GaussianBlur(radius=((args.up_scale-1)/2)))
img_lr_array = img_as_float(np.array(img_lr))
pad_h = int((np.floor(img_lr_array.shape[0]/step) * step + args.patch_size) - img_lr_array.shape[0])
pad_w = int((np.floor(img_lr_array.shape[1]/step) * step + args.patch_size) - img_lr_array.shape[1])
img_lr_array_padded = pad(img_lr_array, ((0, pad_h), (0, pad_w), (0, 0)), mode='reflect')
img_lr_wd = view_as_windows(img_lr_array_padded, (args.patch_size, args.patch_size, 3), step=step)
img_lr_wd = np.squeeze(img_lr_wd)
img_hr_array_padded = pad(img_hr_array, ((0, pad_h), (0, pad_w), (0, 0)), mode='reflect')
img_hr_wd = view_as_windows(img_hr_array_padded, (args.patch_size, args.patch_size, 3), step=step)
img_hr_wd = np.squeeze(img_hr_wd)
with open('output/temp_patch/TileConfiguration.txt', 'w') as text_file:
print('dim = {}'.format(2), file=text_file)
with torch.no_grad():
generator.eval()
for i in range (0, img_lr_wd.shape[1]):
for j in range (0, img_lr_wd.shape[0]):
target = img_hr_wd[j, i]
patch = img_lr_wd[j, i].transpose((2, 0, 1))[None, :]
patch_tensor = torch.from_numpy(patch).float().cuda()
prediction = generator(patch_tensor)
io.imsave('output/temp_patch/{}_{}.tiff'.format(j, i), img_as_ubyte(np.clip(prediction.cpu().numpy()[0], 0, 1)))
io.imsave('output/temp_patch_target/{}_{}.tiff'.format(j, i), img_as_ubyte(target))
print('{}_{}.tiff; ; ({}, {})'.format(j, i, i*step, j*step), file=text_file)
fid = fid_score.calculate_fid_given_paths(('output/temp_patch', 'output/temp_patch_target'), 8, 'cuda:0', 2048)
avg_fid = avg_fid + fid
if stitching:
sys.stdout.write('\r{}/{} stitching, please wait...'.format(k+1, len(test_files)))
params = {'type': 'Positions from file', 'order': 'Defined by TileConfiguration',
'directory':'output/temp_patch', 'ayout_file': 'TileConfiguration.txt',
'fusion_method': 'Linear Blending', 'regression_threshold': '0.30',
'max/avg_displacement_threshold':'2.50', 'absolute_displacement_threshold': '3.50',
'compute_overlap':False, 'computation_parameters': 'Save computation time (but use more RAM)',
'image_output': 'Write to disk', 'output_directory': 'output/temp_channel'}
plugin = "Grid/Collection stitching"
ij.py.run_plugin(plugin, params)
list_channels = [f for f in os.listdir('output/temp_channel')]
c1 = io.imread(os.path.join('output/temp_channel', list_channels[0]))
c2 = io.imread(os.path.join('output/temp_channel', list_channels[1]))
c3 = io.imread(os.path.join('output/temp_channel', list_channels[2]))
c1 = c1[:img.size[1], :img.size[0]]
c2 = c2[:img.size[1], :img.size[0]]
c3 = c3[:img.size[1], :img.size[0]]
img_to_save = np.clip(np.stack((c1, c2, c3)).transpose((1, 2, 0)), 0, 1)
io.imsave(os.path.join('output/sr', os.path.basename(test_files.iloc[k, 0]).replace('.jpg', '.tiff')), img_as_ubyte(img_to_save))
io.imsave(os.path.join('output/lr', os.path.basename(test_files.iloc[k, 0]).replace('.jpg', '.tiff')), img_as_ubyte(img_lr_array))
io.imsave(os.path.join('output/hr', os.path.basename(test_files.iloc[k, 0]).replace('.jpg', '.tiff')), img_as_ubyte(img))
else:
psnr = p_snr('output/temp_patch', 'output/temp_patch_target')
avg_psnr = avg_psnr + psnr
if stitching:
psnr = p_snr('output/sr', 'output/hr')
else:
psnr = avg_psnr / len(test_files)
fid = avg_fid / len(test_files)
return fid, psnr
def p_snr(path_input, path_ref):
MSE = nn.MSELoss()
imgs_input = glob.glob(os.path.join(path_input, '*.tiff'))
imgs_ref = glob.glob(os.path.join(path_ref, '*.tiff'))
ave_psnr = 0
for i in range(len(imgs_input)):
img_input = torch.from_numpy(img_as_float(io.imread(imgs_input[i]).transpose(2, 1, 0)))
img_ref = torch.from_numpy(img_as_float(io.imread(imgs_ref[i]).transpose(2, 1, 0)))
img_input = img_input[None, :]
img_ref = img_ref[None, :]
mse = MSE(img_input, img_ref)
psnr = 10 * log10(1 / mse.item())
ave_psnr += psnr
ave_psnr = ave_psnr / len(imgs_input)
return ave_psnr
def print_output(generator, dataloader_valid, device='cuda:0'):
os.makedirs('output/print', exist_ok=True)
os.makedirs('output/print/lr', exist_ok=True)
os.makedirs('output/print/hr', exist_ok=True)
os.makedirs('output/print/sr', exist_ok=True)
with torch.no_grad():
generator.eval()
print("===> 8x: printing sampled patches")
for iteration, batch in enumerate(dataloader_valid):
input, target = batch['input'].to(device), batch['output'].to(device)
imgs_input =input.float().to(device)
prediction = generator(imgs_input)
target = target.float()
for i in range(target.shape[0]):
utils.save_image(imgs_input[i], 'output/print/lr/{}.tiff'.format(i))
utils.save_image(target[i], 'output/print/hr/{}.tiff'.format(i))
utils.save_image(prediction[i], 'output/print/sr/{}.tiff'.format(i))
break
def main():
parser = argparse.ArgumentParser(description='Train WSISR on compressed TMA dataset')
parser.add_argument('--batch-size', default=32, type=int, help='Batch size')
parser.add_argument('--patch-size', default=224, type=int, help='Patch size')
parser.add_argument('--up-scale', default=5, type=float, help='Targeted upscale factor')
parser.add_argument('--num-workers', default=4, type=int, help='Number of workers')
parser.add_argument('--num-epochs', default=900, type=int, help='Number of epochs, more epochs are desired for GAN training')
parser.add_argument('--g-lr', default=0.0001, type=float, help='Learning rate of the generator')
parser.add_argument('--d-lr', default=0.00001, type=float, help='Learning rate of the descriminator')
parser.add_argument('--percep-weight', default=0.01, type=float, help='GAN loss weight')
parser.add_argument('--run-from', default=None, type=str, help='Load weights from a previous run, use folder name in [weights] folder')
parser.add_argument('--start-epoch', default=1, type=int, help='Starting epoch for the curriculum, start at 1/2 of the epochs to skip the curriculum')
parser.add_argument('--gan', default=1, type=int, help='Use GAN')
parser.add_argument('--num-critic', default=1, type=int, help='Iteration interval for training the descriminator')
parser.add_argument('--test-interval', default=50, type=int, help='Epoch interval for FID score testing')
parser.add_argument('--print-interval', default=10, type=int, help='Epoch interval for output printing')
parser.add_argument('--dataset', default='TMA', type=str, help='Dataset folder name')
args = parser.parse_args()
warnings.filterwarnings('ignore')
device = torch.device('cuda:0')
tensor = torch.cuda.FloatTensor
data.generate_compress_csv()
valid_dataset = new_compress_curriculum(args, args.up_scale, 'valid')
generator = models.Generator()
generator.to(device);
discriminator = models.Discriminator()
discriminator.to(device);
criterionL = nn.L1Loss().cuda()
criterionMSE = nn.MSELoss().cuda()
optimizer_G = torch.optim.Adam(generator.parameters(), lr=args.g_lr)
optimizer_D = torch.optim.Adam(discriminator.parameters(), lr=args.d_lr)
patch = (1, args.patch_size // 2 ** 4, args.patch_size // 2 ** 4)
if args.run_from is not None:
generator.load_state_dict(torch.load(os.path.join('weights', args.run_from, 'generator.pth')))
try:
discriminator.load_state_dict(torch.load(os.path.join('weights', args.run_from, 'discriminator.pth')))
except:
print('Discriminator weights not found!')
pass
optimizer_G = torch.optim.Adam(generator.parameters(), lr=args.g_lr)
optimizer_D = torch.optim.Adam(discriminator.parameters(), lr=args.d_lr)
scheduler_G = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer_G, args.num_epochs, args.g_lr*0.05)
scheduler_D = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer_D, args.num_epochs, args.d_lr*0.05)
run = datetime.now().strftime("%Y-%m-%d--%H-%M-%S")
cur_length = int(0.5*args.num_epochs)
init_scale = 2**2
step_size = (2**args.up_scale-init_scale) / cur_length
print('loading ImageJ, please wait')
ij = imagej.init('fiji/fiji/Fiji.app/')
for epoch in range(args.start_epoch, args.num_epochs):
factor = min(log2(init_scale+(epoch-1)*step_size), args.up_scale)
print('curriculum updated: {} '.format(factor))
train_dataset = new_compress_curriculum(args, factor, 'train', stc=True)
train(args, epoch, run, train_dataset, generator, discriminator, optimizer_G, optimizer_D, criterionL, criterionMSE, tensor, device, patch)
scheduler_G.step()
scheduler_D.step()
if epoch % args.test_interval == 0:
fid, psnr = test(args, generator, data.compress_csv_path('valid', args.dataset))
print('\r>>>> PSNR: {}, FID: {}'.format(psnr, fid))
if epoch % args.print_interval == 0:
print_output(generator, valid_dataset, device)
test(args, generator, data.compress_csv_path('test', args.dataset), stitching=True)
if __name__ == '__main__':
main()