-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathdata_loader.py
170 lines (142 loc) · 7.05 KB
/
data_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
from __future__ import print_function, division
import os, glob, random
import torch
import pandas as pd
from skimage import io, transform, img_as_float, color, img_as_ubyte, exposure
import numpy as np
import matplotlib.pyplot as plt
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms, utils
import torchvision.transforms.functional as F
from PIL import Image, ImageFilter
from sklearn.utils import shuffle
plt.ion() # interactive mode
class Paired_Dataset(Dataset):
def __init__(self, csv_file, img_size=256, transform=None):
self.files_list = pd.read_csv(csv_file)
self.transform = transform
self.img_size = img_size
def __len__(self):
return len(self.files_list)
def __getitem__(self, idx):
low_name = os.path.join(self.files_list.iloc[idx, 0])
high_name = os.path.join(self.files_list.iloc[idx, 1])
low_image = Image.open(low_name)
high_image = Image.open(high_name)
if low_image.size[0] != self.img_size:
low_image = low_image.resize((self.img_size, self.img_size))
high_image = high_image.resize((self.img_size, self.img_size))
sample = {'input': low_image, 'output': high_image}
if self.transform:
sample = self.transform(sample)
return sample
class Compress_Dataset(Dataset):
def __init__(self, csv_file, transform=None):
self.files_list = pd.read_csv(csv_file)
self.transform = transform
def __len__(self):
return len(self.files_list)
def __getitem__(self, idx):
img_name = self.files_list.iloc[idx, 0] # image path
img = Image.open(img_name)
if self.transform:
sample = self.transform(img)
return sample
class Compose(object):
def __init__(self, transforms):
self.transforms = transforms
def __call__(self, img):
for t in self.transforms:
img = t(img)
return img
def __repr__(self):
format_string = self.__class__.__name__ + '('
for t in self.transforms:
format_string += '\n'
format_string += ' {0}'.format(t)
format_string += '\n)'
return format_string
class Rescale(object):
def __init__(self, output_size, up_factor=5, stc=False):
assert isinstance(output_size, (int, tuple))
self.output_size = output_size
self.up_factor = up_factor
self.stc = stc
def __call__(self, img):
img_high = img
if self.stc == True:
factor = max(1, np.random.normal(self.up_factor, 0.5))
else:
factor = self.up_factor
img_low = img_high.resize((int(img.size[1]/factor), int(img.size[0]/factor)))
img_low = img_low.resize(self.output_size, Image.BILINEAR)
img_low = img_low.filter(ImageFilter.GaussianBlur(radius=((factor-1)/2)))
return {'input': img_low, 'output': img_high}
class ToHSV(object):
def __call__(self, sample):
img_low, img_high = sample['input'], sample['output']
img_low = img_low.convert('HSV')
img_high = img_high.convert('HSV')
return {'input': img_low, 'output': img_high}
class ToTensor(object):
def __call__(self, sample):
img_low, img_high = sample['input'], sample['output']
return {'input': transforms.functional.to_tensor(img_low), 'output': transforms.functional.to_tensor(img_high)}
def show_patch(dataloader, index = 0, is_hsv = False):
for i_batch, sample_batched in enumerate(dataloader):
if i_batch == index:
input_batch, output_batch = sample_batched['input'], sample_batched['output']
if is_hsv:
input_img = input_batch.numpy().transpose((0, 2, 3, 1))
output_img = output_batch.numpy().transpose((0, 2, 3, 1))
for i in range(0, input_batch.shape[0]):
input_img[i] = color.hsv2rgb(input_img[i])
output_img[i] = color.hsv2rgb(output_img[i])
input_batch = torch.from_numpy(input_img.transpose(((0, 3, 1, 2))))
output_batch = torch.from_numpy(output_img.transpose(((0, 3, 1, 2))))
batch_size = len(input_batch)
im_size = input_batch.size(2)
plt.figure(figsize=(20, 10))
grid = utils.make_grid(input_batch)
plt.imshow(grid.numpy().transpose((1, 2, 0)), interpolation='bicubic')
plt.axis('off')
plt.figure(figsize=(20, 10))
grid = utils.make_grid(output_batch)
plt.imshow(grid.numpy().transpose((1, 2, 0)), interpolation='bicubic')
plt.axis('off')
break
def generate_compress_csv(dataset='TMA', ext='jpg'):
train_imgs = glob.glob(os.path.join('dataset', dataset, '*.'+ext)) + glob.glob(os.path.join('dataset', dataset, '*', '*.'+ext))
random.shuffle(train_imgs)
train_df = pd.DataFrame(train_imgs[0:int(0.8*len(train_imgs))])
valid_df = pd.DataFrame(train_imgs[int(0.8*len(train_imgs)):int(0.9*len(train_imgs))])
test_df = pd.DataFrame(train_imgs[int(0.9*len(train_imgs)):])
train_df.to_csv(os.path.join('dataset', dataset, 'train-compress.csv'), index=False)
valid_df.to_csv(os.path.join('dataset', dataset, 'valid-compress.csv'), index=False)
test_df.to_csv(os.path.join('dataset', dataset, 'test-compress.csv'), index=False)
def compress_csv_path(csv='train', dataset=None):
if csv =='train':
return os.path.join('dataset', dataset, 'train-compress.csv')
if csv =='test':
return os.path.join('dataset', dataset, 'valid-compress.csv')
if csv =='valid':
return os.path.join('dataset', dataset, 'test-compress.csv')
def generate_paired_csv(dataset='TMA', in_folder=None, out_folder=None, ext='jpg'):
train_imgs_in = glob.glob(os.path.join('dataset', dataset, in_folder, '*.'+ext)) + glob.glob(os.path.join('dataset', dataset, in_folder, '*', '*.'+ext))
train_imgs_out = glob.glob(os.path.join('dataset', dataset, out_folder, '*.'+ext)) + glob.glob(os.path.join('dataset', dataset, out_folder, '*', '*.'+ext))
df = pd.DataFrame(train_imgs_in)
df = df.assign(e=pd.DataFrame(train_imgs_out).values)
df = shuffle(df)
train_df = pd.DataFrame(df.iloc[0:int(0.8*len(train_imgs_in)), :])
valid_df = pd.DataFrame(df.iloc[int(0.8*len(train_imgs_in)):int(0.9*len(train_imgs_in)), :])
test_df = pd.DataFrame(df.iloc[int(0.9*len(train_imgs_in)):, :])
train_df.to_csv(os.path.join('dataset', dataset, 'train-paired.csv'), index=False)
valid_df.to_csv(os.path.join('dataset', dataset, 'valid-paired.csv'), index=False)
test_df.to_csv(os.path.join('dataset', dataset, 'test-paired.csv'), index=False)
def paired_csv_path(csv='train', dataset=None):
if csv =='train':
return os.path.join('dataset', dataset, 'train-paired.csv')
if csv =='test':
return os.path.join('dataset', dataset, 'valid-paired.csv')
if csv =='valid':
return os.path.join('dataset', dataset, 'test-paired.csv')