-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathVotePie.R
221 lines (192 loc) · 6.3 KB
/
VotePie.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
# Set up: we need the names of the parties and types of votes, a. to correctly
# map colours, and b. to ensure that our graph is drawn in the correct sequence
source('Settings.R')
source('Colours.R')
listVoteTypes <- names(colVotes)
listFractions <- names(colFractions)
helperFactors <-
expand.grid(party = listFractions,
vote = listVoteTypes,
stringsAsFactors = FALSE)
helperFactors$level <-
paste(helperFactors$vote, helperFactors$party)
helperColours <-
rbind(
data.frame(name = listVoteTypes, colours = colVotes),
data.frame(name = listFractions, colours = colFractions),
data.frame(
name = helperFactors$level,
colours = rep(colFractions, times = length(listVoteTypes))
)
)
plotPie <-
function(df,
inner,
outer = NA,
coloursInner = NA,
coloursOuter = NA,
pThreshold = 0.05) {
assert(df, not_na, as.symbol(inner))
coloursInner %>% verify(!is.na(.))
hasInnerAndOuter <- all(!(is.na(outer) | is.na(coloursOuter)))
if (hasInnerAndOuter) {
assert(df, not_na, as.symbol(outer))
helperFactors <- expand.grid(
cOuter = names(coloursOuter),
cInner = names(coloursInner),
stringsAsFactors = FALSE
)
helperFactors$level <-
paste(helperFactors$cInner, helperFactors$cOuter)
helperColours <- rbind(
data.frame(name = names(coloursInner),
colour = coloursInner),
data.frame(
name = helperFactors$level,
colour = rep(coloursOuter, times =
length(coloursInner))
)
)
} else {
helperColours <- data.frame(name = names(coloursInner),
colour = coloursInner)
}
# Create a summary for the inner ring
dfinner <- df %>%
group_by(cInner = eval(as.symbol(inner))) %>%
dplyr::summarise(cInner = first(cInner), size = n())
# Make sure the graph is drawn in the sequence we want by turning the
# relevant column into a factor
dfinner$cInner <-
factor(dfinner$cInner, levels = helperColours$name)
# ... and then calculate the x an y position for the text labels
dfinner <- dfinner %>%
arrange(desc(cInner)) %>% mutate(x = 1.1, y = cumsum(size) - 0.5 * size)
if (hasInnerAndOuter) {
# We do the same for the the outer ring of our graph
dfinnerByOuter <- df %>%
group_by(cInner = eval(as.symbol(inner)),
cOuter = eval(as.symbol(outer))) %>%
summarise(
cInner = first(cInner),
cOuter = first(cOuter),
size = n()
)
dfinnerByOuter$cInnerByOuter <- paste(dfinnerByOuter$cInner,
dfinnerByOuter$cOuter)
dfinnerByOuter$cInnerByOuter <-
factor(dfinnerByOuter$cInnerByOuter,
levels = helperColours$name)
# As it turns out, ggplot2 changes plot direction for the second bar
# (ring), therefore we need to reverse the y positions for our text labels
dfinnerByOuter <- dfinnerByOuter %>%
ungroup() %>%
arrange(desc(cInnerByOuter)) %>%
mutate(x = 2, y = cumsum(size) - 0.5 * size)
}
# Now we draw a two-column bar chart. We dont want to squeeze labels into
# spaces that are too small, hence a threshold
sumCInner <- nrow(df)
pie <- ggplot() +
geom_bar(
data = dfinner,
aes(x = 1, y = size, fill = cInner),
stat = 'identity',
color = 'white'
) +
geom_text(aes(
x = dfinner$x,
y = dfinner$y,
label = ifelse(
dfinner$size / sumCInner >= pThreshold,
as.character(dfinner$cInner),
''
)
),
color = "white",
size = 3)
if (hasInnerAndOuter) {
pie <- pie +
geom_bar(
data = dfinnerByOuter,
aes(x = 2,
y = size,
fill = cInnerByOuter),
stat = 'identity',
color = 'white'
) +
geom_text(
aes(
x = dfinnerByOuter$x,
y = dfinnerByOuter$y,
label = ifelse(
dfinnerByOuter$size / sumCInner >= pThreshold,
as.character(dfinnerByOuter$cOuter),
''
)
),
color = "white",
size = 4
)
}
# We give it the correct colours for parties and eval(as.symbol(inner))s
pie <- pie + scale_fill_manual(values = deframe(helperColours))
# We turn it into a pie chart
pie <- pie + coord_polar(theta = 'y', direction = -1)
# ... and tidy up the presentation
pie <- pie + theme(
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
axis.title.x = element_blank(),
axis.text.x = element_blank(),
axis.ticks.x = element_blank(),
axis.title.y = element_blank(),
axis.text.y = element_blank(),
axis.ticks.y = element_blank(),
legend.position = 'none'
)
pie <- pie + labs(x = "", y = "")
return(pie)
}
testPie <- function() {
load(file = paste0(folderRData, 'skVotes.RData'))
load(file = paste0(folderRData, 'skMPs.RData'))
load(file = paste0(folderRData, 'fractions.RData'))
delme <- skVotes %>%
filter(skVotes$poll.id == 4034) %>%
left_join(skMPs, by = c('mandate.id' = 'id')) %>%
left_join(fractions, by = c('fraction_membership.fraction.id' = 'id')) %>%
select('poll.id',
'mandate.id',
'politician.label',
'short_name',
'vote')
delme <- delme %>% filter(!is.na(delme$short_name))
p1 <- plotPie2(
delme,
inner = 'vote',
outer = 'short_name',
coloursInner = colVotes,
coloursOuter = colFractions
)
ggsave(plot = p1,
dpi = 'print',
filename = 'VotePie Test Image 1.jpg')
p2 <- plotPie2(delme,
inner = 'vote',
coloursInner = colVotes)
ggsave(plot = p2,
dpi = 'print',
filename = 'VotePie Test Image 2.jpg')
p3 <- plotPie2(
delme,
inner = 'short_name',
outer = 'vote',
coloursInner = colFractions,
coloursOuter = colVotes
)
ggsave(plot = p3,
dpi = 'print',
filename = 'VotePie Test Image 3.jpg')
}
#testPie()