
Commented parameter analysis

Helios++ allows customization via very many parameters. In the design of the new Python API, it is of great importance to analyse exactly what parameters
there are and how they should be handled in the future. This document is meant for circulation across the dev team to come up with a plan that allows us to
design a good API that avoids parameter bloat.

Explanation

The meaning of the columns in below table is the following:

Name : Name of the parameter in Helios v2

Where in v3? : Where should this be defined in the Python API of v3. Potential options are

global : Global state manipulated via dedicated functions in the API

property:X : Should be manipulated as a property of a class X . These classes are e.g. Survey , Scanner , Platform , Leg , Scene ,
ScenePart , PlatformSettings , ScannerSettings

method:X : Should be a parameter of a given method like e.g. Survey.run or Survey.add_leg .

cli : CLI-only parameter in the (still existing) CLI

none : Should be omitted in the Python API

Validation : What type annotation/pydantic constraint should be used on this? If you do not know it exactly how to write one, just put as much
information as possible in words

Group? : If we would be looking at grouping parameters into suitable clusters, what cluster would that be

Remark : What ever is worth mentioning

Command Line Parameters

Name Where in v3? Validation Default Group? Remark

help cli

version global

test none
Test should be
separate
executable

unzip none
Could be added
as a utility, if
needed

assets global list[Path]

Work dir, Helios
installation directory,
data subdir of Helios
installation directory

output method:Survey.run Optional[Path] ./output Output

splitByChannel global and/or
method:Survey.run bool False Output

writeWaveform global and/or
method:Survey.run bool False Output?

writePulse global and/or
method:Survey.run bool False Output

calcEchowidth global and/or
method:Survey.run bool False

Execution and
Output?

fullwaveNoise global and/or
method:Survey.run bool False ?

fixedIncidenceAngle global and/or
method:Survey.run bool False Execution?

seed global conint(ge=0) random Execution?
Randomness?

gpsStartTime property:Survey or
method:Survey.run? conint(ge=0) now

Apparently,
pydantic

coerces
timestamp
strings to
integers

lasOutput method:Survey.run bool True Output

Name Where in v3? Validation Default Group? Remark

las10 method:Survey.run bool False Output
Is this still
relevant? hw:
imo no

zipOutput method:Survey.run bool False Output

lasScale method:Survey.run confloat(gt=0) 0.0001 Output

parallelization method:Survey.run Literal(X.chunk,

X.warehouse)
X.chunk Execution X would a new

enum

num_threads global and/or
method:Survey.run conint(ge=1, le=n) n Execution

n is the max
number of
physical
threads. Or is
oversubscription
intended?

chunkSize global and/or
method:Survey.run conint(ge=1) 32 Execution

warehouseFactor global and/or
method:Survey.run conint(ge=1) 4 Execution

rebuildScene method:Survey.from_xml
or Scene.__init__ bool False

Execution /
Scene
building?

noSceneWriting method:Survey.from_xml
or Scene.__init__ bool False

Execution /
Scene
building?

kdt method:Scene.from_xml
etc.

Literal(X.simple,

X.median, X.sah,

X.sah_approximation)

X.sah_approximation KDTree X is a custom
enum

kdtJobs method:Scene.from_xml
etc. conint(ge=1, le=n) n KDTree

n is the
number of
physically
available
threads

kdtGeomJobs method:Scene.from_xml
etc. conint(ge=1, le=n) 1 KDTree

n is the
number of
physically
available
threads

sahNodes method:Scene.from_xml
etc. conint(ge=1) 32 KDTree

disablePlatformNoise property:Platform bool False

disableLegNoise
property:Leg or
property:Survey (for all
legs)

bool False

logFile global and/or Survey.run bool False
Execution or
Logging?

logFileOnly global and/or Survey.run bool False
Execution or
Logging?

verbosity global and/or Survey.run Literal(LogLevel.ERROR,

...)
? Execution or

Logging?

LogLevel

would be a new
enum. Merges
existing CLI
flags (-q , -vt ,
-v , -vv)

ScannerSettings

ScannerSettings will for sure be grouped together like they were before. Ideally, we would build subclasses of that which only contain those parameters
relevant to to the optics types Rotating , Oscillating , Line , Conic and Risley . The Groups column is used for that. A parameter can belong to
multiple groups if it is relevant in more than one subset. From the technical side, the default for the same parameter could differ per group if you find that a
useful thing.

ScannerSettings can be set hierarchically with the most specific set of given parameters taking precedence:

Globally (Is this desirable?) hw: I'd say no

property:Survey

property:Leg

Individual parameters given as keyword arguments to Survey.add_leg

Previously, these settings used a templating mechanism. In a Python API, I would argue that the power of a programming language to configure your
simulations makes such concepts obsolete.

Name Validation Default Groups Remark

is_active bool True ?

head_rotation confloat(ge=0,

lt=360)
0

Rotating
head /
TLS

hw: In deg/s. Can be positive for counterclockwise, negative for
clockwise rotation. Limited by maximum head rotation speed of
scanner device. - check validation

rotation_start_angle confloat(ge=0,

lt=360)
0

Rotating
head /
TLS

hw:: check validation

rotation_stop_angle confloat(ge=0,

lt=360)
0

Rotating
head /
TLS

hw: Expected to be > rotation_start_angle for counterclockwise
rotation (and < for clockwise); Can be > 360 deg to have scanner
rotate multiple full rotations, see
surveys/demo/box_survey_static_puck.xml - check validation

pulse_frequency conint(gt=0) 300000 ?

scan_angle float 0.349066 ? What is the exact constraint?

min_vertical_angle float nan TLS
What is the exact constraint? Is nan really a good default here? hw:
Is set currently set internally by scan_angle (which defines the +-
angle), would overwrite the min angle

max_vertical_angle float nan TLS What is the exact constraint? Is nan really a good default here? hw:
See above, would overwrite the max angle

scan_frequency confloat(gt=0) 200 ? hw: Constrained my max possible scan angle of device

beam_divergence_angle float 0.0003 ? What is the exact constraint? hw: Should this be here, i.e., do we
want to allow overriding the angle set for the scanner device

trajectory_time_interval confloat(gt=0) 0.01 ?

vertical_resolution float 0 TLS Shouldnt this be > 0? hw: Remove this from C++ and move to
Python? - overwrites scan_frequency

horizontal_resolution float 0
Rotating
head/TLS

Shouldnt this be > 0? hw: Remove this from C++ and move to
Python? - overwrites head_rotation

PlatformSettings

"Normal" Platform Settings

By "normal" here we mean that they are part of the C++ class PlatformSettings . These PlatformSettings are dealt with similar to ScannerSettings ,
only that the groups refer to TLS , ALS etc.

Name Validation Default Groups Remark

x float 0 universal valid for any platform

y float 0 universal

z float 0 universal

is_yaw_angle_specified bool False multicopter
hw: hw: decide whether to keep the
platform

yaw_angle confloat(ge=0 ,

lt=360)
0 multicopter

is_on_ground bool False

is_stop_and_turn bool True multicopter

is_smooth_turn bool False multicopter

is_slowdown_enabled bool True multicopter

speed_m_s confloat(gt=0) 70
linearpath & multicopter (dynamic
platforms)

hw: Not used for platform type
static

Trajectory Settings

Trajectory settings are organized as a separate class and could be kept as such:

Name Validation Default Remark

tStart float std::numeric_limits<double>::lowest()
I am not super happy with these defaults, as they are used as
signals

tEnd float std::numeric_limits<double>::max()
I am not super happy with these defaults, as they are used as
signals

Name Validation Default Remark

teleportToStart bool False

Additional XML Platform Settings

To my confusion, I can find a lot of platform settings in the XML file, that are not part of the PlatformSettings class, but instead are parsed from the XML
and then directly set respective properties. I was wondering whether these should be implemented differently in the new API. Also, they do not seem to
require fine grained hierarchical control (global/Survey/Leg etc.). This is the list, again with the Group column indicating opportunities to aggregate options
into groups to keep interfaces slim:

Name Where in
v3? Validation Default Group? Remark

trajectory Leg
construction Path - Trajectory

Input
Would it also make sense to have this
setting hierarchical and then cut a segment
of it with [tStart , tEnd]

tIndex Leg
construction conint(ge=0, le=6) 0 TrajectoryInput

xIndex Leg
construction conint(ge=0, le=6) 1 TrajectoryInput

yIndex Leg
construction conint(ge=0, le=6) 2 TrajectoryInput

zIndex Leg
construction conint(ge=0, le=6) 3 TrajectoryInput

rollIndex Leg
construction conint(ge=0, le=6) 4 TrajectoryInput

pitchIndex Leg
construction conint(ge=0, le=6) 5 TrajectoryInput

yawIndex Leg
construction conint(ge=0, le=6) 6 TrajectoryInput

trajectory_separator Leg
construction

constr(min_length=1,

max_length=1)
, TrajectoryInput

slopeFilterThreshold ? float 0.0 TrajectoryInput ?

toRadians none? bool False TrajectoryInput Seems to be only controlling the XML
parsing

syncGPSTime ? bool False TrajectoryInput ?

interpolationDomain ? Literal("", "position",

"position_and_attitude"
"" TrajectoryInput ?

FullWaveformSettings

You already described full wave form settings as a property of Survey in your API sketches. This is fine for me.

Name Validation Default Remark

binSize_ns confloat(gt=0) 0.25

minEchoWidth confloat(gt=0) 2.5

peakEnergy confloat(gt=0) 500.0

apertureDiameter confloat(gt=0) 0.15

scannerEfficiency float 0.9 What is the constraint? [0,1]? > yes

atmosphericVisibility float 0.9 What is the constraint? [0,1]? > yes

scannerWaveLength confloat(gt=0) 1550.0

beamDivergence_rad confloat(ge=0,

lt=2*math.PI)
0.0003

hw: Is this inherited by the scanner or shall it be possible to overwrite this
in the survey?

pulseLength_ns confloat(gt=0) 4.0

beamSampleQuality int 3
What is the constraint? hw: > (>= 1) - not sure about how to determine an
upper limit (-> computational constraints)

winSize_ns confloat(gt=0)
pulseLength_ns

/ 4.0

Not sure yet how we can express defaults of this kind, but it is good to
collect the information

maxFullwaveRange_ns confloat(ge=0) 0.0

XML Settings not currently matched to any of the above settings groups

I have found these settings when looking through all provided XMLs, but they came across as isolated occurences:

Name Where
in v2? Where in v3? Validation Default Remark

rotationSpec
XML
Survey
attribute

property:Survey Literal('CANONICAL',

'ARINC 705')

"ARINC

705"

scannerMount XML
Survey

I am confused by this one. Why is it on the survey and
not on the platform? hw: Because we can (not saying
we should/still need to)

detectorSettings XML
Survey

I only found one occurence and would need to learn
more about this. What other similar options are there?
hw Lets us override some detector settings from the
scanner, see wiki/Survey#detector-settings

Omitted parameters

I omitted all XML parameters used to describe Scene , Scanner and Platform . For Scene , the translation of the parameters to a Python API seems fairly
obvious (although the exact design of that API is not). For Scanner and Platform , their programmatic definition is something to be tackled in the future
and I very much hope that the exact parameters required to do that would not interfere with any of the other parameters here.

https://github.com/3dgeo-heidelberg/helios/wiki/Survey#detector-settings

